85,276 research outputs found
Heat transfer and pressure drop in blade cooling channels with turbulence promoters
Repeated rib roughness elements have been used in advanced turbine cooling designs to enhance the internal heat transfer. Often the ribs are perpendicular to the main flow direction so that they have an angle-of-attack of 90 deg. The objective of the project was to investigate the effect of rib angle-of-attack on the pressure drop and the average heat transfer coefficients in a square duct with two opposite rib-roughned walls for Reynolds number varied from 8000 to 80,000. The rib height-to-equivalent diameter ratio (e/D) was kept at a constant value of 0.063, the rib pitch-to-height ratio (P/e) was varied from 10 to 20, and the rib angle-of-attack (alpha) was varied from 90 deg to 60 deg to 45 deg to 30 deg respectively. Two types of entrance conditions were examined, namely, long duct and sudden contraction. The heat transfer coefficient distribution on the smooth side wall and the rough side wall at the entrance and the fully developed regions were measured. Thermal performance comparison indicated that the pumping power requirement for the rib with an oblique angle to the flow (alpha = 45 deg to 30 deg) was about 20 to 50 percent lower than the rib with a 90 deg angle to the flow for a given heat transfer duty
Entropic Regularization Approach for Mathematical Programs with Equilibrium Constraints
A new smoothing approach based on entropic perturbationis proposed for solving mathematical programs withequilibrium constraints. Some of the desirableproperties of the smoothing function are shown. Theviability of the proposed approach is supported by acomputationalstudy on a set of well-known test problems.mathematical programs with equilibrium constraints;entropic regularization;smoothing approach
Entropic regularization approach for mathematical programs with equilibrium constraints
A new smoothing approach based on entropic perturbation is proposed for solving mathematical programs with equilibrium constraints. Some of the desirable properties of the smoothing function are shown. The viability of the proposed approach is supported by a computational study on a set of well-known test problems.Entropic regularization;Smoothing approach;Mathematical programs with equilibrium constraints
Transport in Graphene Tunnel Junctions
We present a technique to fabricate tunnel junctions between graphene and Al
and Cu, with a Si back gate, as well as a simple theory of tunneling between a
metal and graphene. We map the differential conductance of our junctions versus
probe and back gate voltage, and observe fluctuations in the conductance that
are directly related to the graphene density of states. The conventional
strong-suppression of the conductance at the graphene Dirac point can not be
clearly demonstrated, but a more robust signature of the Dirac point is found:
the inflection in the conductance map caused by the electrostatic gating of
graphene by the tunnel probe. We present numerical simulations of our
conductance maps, confirming the measurement results. In addition, Al causes
strong n-doping of graphene, Cu causes a moderate p-doping, and in high
resistance junctions, phonon resonances are observed, as in STM studies.Comment: 22 pages, 5 figure
User's guide for the Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) CELL-ALL tape
The SMMR instrument onboard the Nimbus-7 satellite has been in operation since October 1978. It provided global coverage of passive microwave observations at 6.6, 10.7, 18, 21, and 37 GHz. The oberved brightness temperature can be used to retrieve geophysical parameters, principally sea surface temperature, atmospheric water vapor and liquid water content over oceans, sea ice concentration, and snow cover over land. The SMME CELL-ALL Tape contains earth-located calibrated brightness temperature data which have been appropriately binned into cells of various grid sizes, allowing intercomparisons of observations made at different frequencies (with corresponding different footprint sizes). This user's guide describes the operation of the instrument, the flow of the data processing the calibration procedure, and the characteristics of the calibrated brightness temperatures and how they are binned. Detailed tape specifications and lists of available data are also provided
Stokes Parameters as a Minkowskian Four-vector
It is noted that the Jones-matrix formalism for polarization optics is a
six-parameter two-by-two representation of the Lorentz group. It is shown that
the four independent Stokes parameters form a Minkowskian four-vector, just
like the energy-momentum four-vector in special relativity. The optical filters
are represented by four-by-four Lorentz-transformation matrices. This
four-by-four formalism can deal with partial coherence described by the Stokes
parameters. A four-by-four matrix formulation is given for decoherence effects
on the Stokes parameters, and a possible experiment is proposed. It is shown
also that this Lorentz-group formalism leads to optical filters with a symmetry
property corresponding to that of two-dimensional Euclidean transformations.Comment: RevTeX, 22 pages, no figures, submitted to Phys. Rev.
An integrated wind risk warning model for urban rail transport in Shanghai, China
The integrated wind risk warning model for rail transport presented has four elements:
Background wind data, a wind field model, a vulnerability model, and a risk model. Background
wind data uses observations in this study. Using the wind field model with effective surface
roughness lengths, the background wind data are interpolated to a 30-m resolution grid. In the
vulnerability model, the aerodynamic characteristics of railway vehicles are analyzed with CFD
(Computational Fluid Dynamics) modelling. In the risk model, the maximum value of three
aerodynamic forces is used as the criteria to evaluate rail safety and to quantify the risk level under
extremely windy weather. The full model is tested for the Shanghai Metro Line 16 using wind
conditions during Typhoon Chan-hom. The proposed approach enables quick quantification of real-
time safety risk levels during typhoon landfall, providing sophisticated warning information for
rail vehicle operation safety
- …