2,355 research outputs found

    Role of p-f Hybridization in the Metal-Non-Metal Transition of PrRu4P12

    Full text link
    Electronic state evolution in the metal-non-metal transition of PrRu4P12 has been studied by X-ray and polarized neutron diffraction experiments. It has been revealed that, in the low-temperature non-metallic phase, two inequivalent crystal-field (CF) schemes of Pr3+ 4f^2 electrons with Gamma_1 and Gamma_4^(2) ground states are located at Pr1 and Pr2 sites forming the bcc unit cell surrounded by the smaller and larger cubic Ru-ion sublattices, respectively. This modulated electronic state can be explained by the p-f hybridization mechanism taking two intermediate states of 4f^1 and 4f^3. The p-f hybridization effect plays an important role for the electronic energy gain in the metal-non-metal transition originated from the Fermi surface nesting.Comment: 5 pages, 5 figures. Accepted by J. Phys. Soc. Jp

    XANES study of rare-earth valency in LRu4P12 (L = Ce and Pr)

    Full text link
    Valency of Ce and Pr in LRu4P12 (L = Ce and Pr) was studied by L2,3-edge x-ray absorption near-edge structure (XANES) spectroscopy. The Ce-L3 XANES spectrum suggests that Ce is mainly trivalent, but the 4f state strongly hybridizes with ligand orbitals. The band gap of CeRu4P12 seems to be formed by strong hybridization of 4f electrons. Pr-L2 XANES spectra indicate that Pr exists in trivalent state over a wide range in temperature, 20 < T < 300 K. We find that the metal-insulator (MI) transition at TMI = 60 K in PrRu4P12 does not originate from Pr valence fluctuation.Comment: 4 page

    Optical Conductivity and Electronic Structure of CeRu4Sb12 under High Pressure

    Full text link
    Optical conductivity [s(w)] of Ce-filled skutterudite CeRu4Sb12 has been measured at high pressure to 8 GPa and at low temperature, to probe the pressure evolution of its electronic structures. At ambient pressure, a mid-infrared peak at 0.1 eV was formed in s(w) at low temperature, and the spectral weight below 0.1 eV was strongly suppressed, due to a hybridization of the f electron and conduction electron states. With increasing external pressure, the mid-infrared peak shifts to higher energy, and the spectral weight below the peak was further depleted. The obtained spectral data are analyzed in comparison with band calculation result and other reported physical properties. It is shown that the electronic structure of CeRu4Sb12 becomes similar to that of a narrow-gap semiconductor under external pressure.Comment: 8 pages, 9 figure

    Shock compression and isentropic release of granite

    Get PDF
    New equation of state data for a weathered granite shocked to about 125 GPa are reported and combined with the Westerly granite data of McQueen, Marsh & Fritz (1967). The shock velocity (U_s)-particle velocity (U_p) relations can be fitted with two linear regressions: U_s= 4.40 + 0.6U_p for a range of U_p up to about 2 km s^(-1) and U_s= 2.66 + 1.49U_p for a range of about 2 to 5 km s^(-1). The third-order Birch-Murnaghan equation of state parameters are K_(os) = 51-57 GPa and K'_(os) = 1.4-1.8 for the low-pressure regime and K_(os) = 251 ± 30 GPa and an assumed K'_(os) = 4 for the high-pressure regime. Compressive waveforms in dry and water-saturated granite were measured at 10-15 GPa using the VISAR technique. The measured wave profiles were successfully modelled using a Maxwellian stress-relaxation material model. Water-saturated granite is characterized by a ~25 per cent lower yield strength and a ~75 per cent longer material relaxation time than dry granite

    Decoupling between Field-instabilities of Antiferromagnetism and Pseudo-metamagnetism in Rh-doped CeRu2Si2 Kondo Lattice

    Full text link
    Doping Kondo lattice system CeRu2Si2 with Rh-8% (Ce(Ru0.92Rh0.08)2Si2) leads to drastic consequences due to the mismatch of the lattice parameters between CeRu2Si2 and CeRh2Si2. A large variety of experiments clarifies the unusual properties of the ground state induced by the magnetic field from longitudinal antiferromagnetic (AF) mode at H = 0 to polarized paramagnetic phase in very high magnetic field. The separation between AF phase, paramagnetic phase and polarized paramagnetic phase varying with temperature, magnetic field and pressure is discussed on the basis of the experiments down to very low temperature. Similarities and differences between Rh and La substituted alloys are discussed with emphasis on the competition between transverse and longitudinal AF modes, and ferromagnetic fluctuations.Comment: 10 pages, 21 figures, accepted for publication in J. Phys. Soc. Jp

    Unconventional resistivity at the border of metallic antiferromagnetism in NiS2

    Get PDF
    We report low-temperature and high-pressure measurements of the electrical resistivity \rho(T) of the antiferromagnetic compound NiS_2 in its high-pressure metallic state. The form of \rho(T) suggests that metallic antiferromagnetism in NiS_2 is quenched at a critical pressure p_c=76+-5 kbar. Near p_c the temperature variation of \rho(T) is similar to that observed in NiS_{2-x}Se_x near the critical composition x=1 where the Neel temperature vanishes at ambient pressure. In both cases \rho(T) varies approximately as T^{1.5} over a wide range below 100 K. However, on closer analysis the resistivity exponent in NiS_2 exhibits an undulating variation with temperature not seen in NiSSe (x=1). This difference in behaviour may be due to the effects of spin-fluctuation scattering of charge carriers on cold and hot spots of the Fermi surface in the presence of quenched disorder, which is higher in NiSSe than in stoichiometric NiS_2.Comment: 7 page

    Magnetic Phase Diagram and Metal-Insulator Transition of NiS2-xSex

    Full text link
    Magnetic phase diagram of NiS2-xSex has been reexamined by systematic studies of electrical resistivity, uniform magnetic susceptibility and neutron diffraction using single crystals grown by a chemical transport method. The electrical resistivity and the uniform magnetic susceptibility exhibit the same feature of temperature dependence over a wide Se concentration. A distinct first order metal-insulator (M-I) transition accompanied by a volume change was observed only in the antiferromagnetic ordered phase for 0.50<x<0.59. In this region, the M-I transition makes substantial effects to the thermal evolution of staggered moments. In the paramagnetic phase, the M-I transition becomes broad; both the electrical resistivity and the uniform magnetic susceptibility exhibit a broad maximum around the temperatures on the M-I transition-line extrapolated to the paramagnetic phase.Comment: 6 pages, 8 figures, corrected EPS fil

    Spin fluctuations in CuGeO3_3 probed by light scattering

    Full text link
    We have measured temperature dependence of low-frequency Raman spectra in CuGeO3_3, and have observed the quasi-elastic scattering in the (c,c)(c,c) polarization above the spin-Peierls transition temperature. We attribute it to the fluctuations of energy density in the spin system. The magnetic specific heat and an inverse of the magnetic correlation length can be derived from the quasi-elastic scattering. The inverse of the magnetic correlation length is proportional to (TTSP)1/2(T-T_{SP})^{1/2} at high temperatures. We compare the specific heat with a competing-JJ model. This model cannot explain quantitatively both the specific heat and the magnetic susceptibility with the same parameters. The origin of this discrepancy is discussed.Comment: 17 pages, REVTeX, 5 Postscript figures; in press in PR

    Multipole State of Heavy Lanthanide Filled Skutterudites

    Full text link
    We discuss multipole properties of filled skutterudites containing heavy lanthanide Ln from a microscopic viewpoint on the basis of a seven-orbital Anderson model. For Ln=Gd, in contrast to naive expectation, quadrupole moments remain in addition to main dipole ones. For Ln=Ho, we find an exotic state governed by octupole moment. For Ln=Tb and Tm, no significant multipole moments appear at low temperatures, while for Ln=Dy, Er, and Yb, dipole and higher-order multipoles are dominant. We briefly discuss possible relevance of these multipole states with actual materials.Comment: 5 pages, 3 figure
    corecore