911 research outputs found
Correspondence between continuous variable and discrete quantum systems of arbitrary dimensions
We establish a mapping between a continuous variable (CV) quantum system and
a discrete quantum system of arbitrary dimension. This opens up the general
possibility to perform any quantum information task with a CV system as if it
were a discrete system of arbitrary dimension. The Einstein-Podolsky-Rosen
state is mapped onto the maximally entangled state in any finite dimensional
Hilbert space and thus can be considered as a universal resource of
entanglement. As an explicit example of the formalism a two-mode CV entangled
state is mapped onto a two-qutrit entangled state.Comment: 4 pages, 1 figure, revised version, an example adde
Nonclassicality of pure two-qutrit entangled states
We report an exhaustive numerical analysis of violations of local realism by
two qutrits in all possible pure entangled states. In Bell type experiments we
allow any pairs of local unitary U(3) transformations to define the measurement
bases. Surprisingly, Schmidt rank-2 states, resembling pairs of maximally
entangled qubits, lead to the most noise-robust violations of local realism.
The phenomenon seems to be even more pronounced for four and five dimensional
systems, for which we tested a few interesting examples.Comment: 6 pages, journal versio
Matter-wave interferometer for large molecules
We demonstrate a near-field Talbot-Lau interferometer for C-70 fullerene
molecules. Such interferometers are particularly suitable for larger masses.
Using three free-standing gold gratings of one micrometer period and a
transversally incoherent but velocity-selected molecular beam, we achieve an
interference fringe visibility of 40 % with high count rate. Both the high
visibility and its velocity dependence are in good agreement with a quantum
simulation that takes into account the van der Waals interaction of the
molecules with the gratings and are in striking contrast to a classical moire
model.Comment: revtex4, 4 pages, 3 figure
Experimental Demonstration of Decoherence-Free One-Way Information Transfer
We report the experimental demonstration of a one-way quantum protocol
reliably operating in the presence of decoherence. Information is protected by
designing an appropriate decoherence-free subspace for a cluster state
resource. We demonstrate our scheme in an all-optical setup, encoding the
information into the polarization states of four photons. A measurement-based
one-way information-transfer protocol is performed with the photons exposed to
severe symmetric phase-damping noise. Remarkable protection of information is
accomplished, delivering nearly ideal outcomes.Comment: 5 pages, 3 figures, RevTeX
Experimental realization of Dicke states of up to six qubits for multiparty quantum networking
We report the first experimental generation and characterization of a
six-photon Dicke state. The produced state shows a fidelity of F=0.56+/-0.02
with respect to an ideal Dicke state and violates a witness detecting genuine
six-qubit entanglement by four standard deviations. We confirm characteristic
Dicke properties of our resource and demonstrate its versatility by projecting
out four- and five-photon Dicke states, as well as four-photon GHZ and W
states. We also show that Dicke states have interesting applications in
multiparty quantum networking protocols such as open-destination teleportation,
telecloning and quantum secret sharing.Comment: 4 pages, 4 figures, RevTeX
The puzzlingly large Ca II triplet absorption in dwarf elliptical galaxies
We present central CaT, PaT, and CaT* indices for a sample of fifteen dwarf
elliptical galaxies (dEs). Twelve of these have CaT* ~ 7 A and extend the
negative correlation between the CaT* index and central velocity dispersion
sigma, which was derived for bright ellipticals (Es), down to 20 < sigma < 55
km/s. For five dEs we have independent age and metallicity estimates. Four of
these have CaT* ~ 7 A, much higher than expected from their low metallicities
(-1.5 < [Z/H] < -0.5). The observed anti-correlation of CaT* as a function of
sigma or Z is in flagrant disagreement with theory. We discuss some of the
amendments that have been proposed to bring the theoretical predictions into
agreement with the observed CaT*-values of bright Es and how they can be
extended to incorporate also the observed CaT*-values of dEs. Moreover, 3 dEs
in our sample have CaT* ~ 5 A, as would be expected for metal-poor stellar
systems. Any theory for dE evolution will have to be able to explain the
co-existence of low-CaT* and high-CaT* dEs at a given mean metallicity. This
could be the first direct evidence that the dE population is not homogeneous,
and that different evolutionary paths led to morphologically and kinematically
similar but chemically distinct objects.Comment: 4 pages, 3 figures, accepted for publication in ApJ Letter
Operationally Invariant Information in Quantum Measurements
A new measure of information in quantum mechanics is proposed which takes
into account that for quantum systems the only feature known before an
experiment is performed are the probabilities for various events to occur. The
sum of the individual measures of information for mutually complementary
observations is invariant under the choice of the particular set of
complementary observations and conserved if there is no information exchange
with an environment. That operational quantum information invariant results in
N bits of information for a system consisting of N qubits.Comment: 4 pages, 1 figur
On the origin of bursts in blue compact dwarf galaxies: clues from kinematics and stellar populations
Blue compact dwarf galaxies (BCDs) form stars at, for their sizes, extraordinarily high rates. In this paper, we study what triggers this starburst and what is the fate of the galaxy once its gas fuel is exhausted. We select four BCDs with smooth outer regions, indicating them as possible progenitors of dwarf elliptical galaxies. We have obtained photometric and spectroscopic data with the FORS and ISAAC instruments on the VLT. We analyse their infrared spectra using a full spectrum fitting technique, which yields the kinematics of their stars and ionized gas together with their stellar population characteristics. We find that the stellar velocity to velocity dispersion ratio ((nu/sigma)(star)) of our BCDs is of the order of 1.5, similar to that of dwarf elliptical galaxies. Thus, those objects do not require significant (if any) loss of angular momentum to fade into early-type dwarfs. This finding is in discordance with previous studies, which however compared the stellar kinematics of dwarf elliptical galaxies with the gaseous kinematics of star-forming dwarfs. The stellar velocity fields of our objects are very disturbed and the star formation regions are often kinematically decoupled from the rest of the galaxy. These regions can be more or less metal rich with respect to the galactic body and sometimes they are long lived. These characteristics prevent us from pinpointing a unique trigger of the star formation, even within the same galaxy. Gas impacts, mergers, and in-spiraling gas clumps are all possible star formation igniters for our targets
High-fidelity entanglement swapping with fully independent sources
Entanglement swapping allows to establish entanglement between independent
particles that never interacted nor share any common past. This feature makes
it an integral constituent of quantum repeaters. Here, we demonstrate
entanglement swapping with time-synchronized independent sources with a
fidelity high enough to violate a Clauser-Horne-Shimony-Holt inequality by more
than four standard deviations. The fact that both entangled pairs are created
by fully independent, only electronically connected sources ensures that this
technique is suitable for future long-distance quantum communication
experiments as well as for novel tests on the foundations of quantum physics.Comment: added technical details and extended introduction and conclusion,
slightly modified the abstract, corrected a mistake in the affiliation
Crucial Role of Quantum Entanglement in Bulk Properties of Solids
We demonstrate that the magnetic susceptibility of strongly alternating
antiferromagnetic spin-1/2 chains is an entanglement witness. Specifically,
magnetic susceptibility of copper nitrate (CN) measured in 1963 (Berger et al.,
Phys. Rev. 132, 1057 (1963)) cannot be described without presence of
entanglement. A detailed analysis of the spin correlations in CN as obtained
from neutron scattering experiments (Xu et al., Phys. Rev. Lett. 84, 4465
(2000)) provides microscopic support for this interpretation. We present a
quantitative analysis resulting in the critical temperature of 5K in both,
completely independent, experiments below which entanglement exists.Comment: 4 pages, 2 figure
- …