29 research outputs found

    IRNSS stand-alone positioning: first results in Australia

    Get PDF
    The Indian Regional Navigation Satellite System (IRNSS) currently under development is expected to reach full operational capability before 2017. As a large part of the Australian continent lies in IRNSS’s service area, it is important to gain an understanding of its navigational potential and actual positioning capabilities for Australian users. The goals of this contribution are therefore to provide insight into IRNSS, to demonstrate its current positioning performance using actual L5 pseudorange tracking data, and to analyse its expected positioning performance for when the system is fully operational. As such this contribution provides the very first results of the IRNSS stand-alone positioning capabilities over Australia

    Risking to underestimate the integrity risk

    Get PDF
    As parameter estimation and statistical testing are often intimately linked in the processing of observational data, the uncertainties involved in both estimation and testing need to be properly propagated into the final results produced. This necessitates the use of conditional distributions when evaluating the quality of the resulting estimator. As the conditioning should be on the identified hypothesis as well as on the corresponding testing outcome, omission of the latter will result in an incorrect description of the estimator’s distribution. In this contribution, we analyse the impact this omission or approximation has on the considered distribution of the estimator and its integrity risk. For a relatively simple observational model it is mathematically proven that the rigorous integrity risk exceeds the approximation for the contributions under the null hypothesis, which typically has a much larger probability of occurrence than an alternative. Actual GNSS-based positioning examples confirm this finding. Overall we observe a tendency of the approximate integrity risk being smaller than the rigorous one. The approximate approach may, therefore, provide a too optimistic description of the integrity risk and thereby not sufficiently safeguard against possibly hazardous situations. We, therefore, strongly recommend the use of the rigorous approach to evaluate the integrity risk, as underestimating the integrity risk in practice, and also the risk to do so, cannot be acceptable particularly in critical and safety-of-life applications

    Precise regional L5 positioning with IRNSS and QZSS: stand-alone and combined

    Get PDF
    In this contribution we analyze the single-frequency L5 positioning capabilities of the two regional satellite navigation systems IRNSS and QZSS, stand alone as well as combined. The positioning analysis is done for two different baselines, having a mix of receivers, providing ambiguity-float and ambiguity-fixed positioning for models with and without zenith tropospheric delay (ZTD) estimation. The analyses include a precision analysis of the observed signals, as well as an analysis of the ambiguity resolution performance. This is done for both the multipath-uncorrected case as well as the multipath-mitigated case. It is shown that although single-system positioning performance is rather poor, the ZTD-fixed, single-epoch ambiguity success rates (ASRs) are close to 100% when the two regional systems are combined, thus providing mm-to-cm level precision for instantaneous ambiguity-fixed positioning. When the ZTD is estimated as well, only a few additional epochs are needed to get the ASRs close to 100%

    IRNSS/NavIC and GPS: a single- and dual-system L5 analysis

    Get PDF
    The Indian Regional Navigation Satellite System (IRNSS) has recently (May 2016) become fully operational. In this contribution, for the fully operational IRNSS as a stand-alone system and also in combination with GPS, we provide a first assessment of L5 integer ambiguity resolution and positioning performance. While our empirical analyses are based on the data collected by two JAVAD receivers at Curtin University, Perth, Australia, our formal analyses are carried out for various onshore locations within the IRNSS service area. We study the noise characteristics (carrier-to-noise density, measurement precision, time correlation), the integer ambiguity resolution performance (success rates and ambiguity dilution of precision), and the positioning performance (ambiguity float and ambiguity fixed). The results show that our empirical outcomes are consistent with their formal counterparts and that the GPS L5-data have a lower noise level than that of IRNSS L5-data, particularly in case of the code data. The underlying model in our assessments varies from stand-alone IRNSS (L5) to IRNSS (Formula presented.) GPS (L5), from unconstrained to height-constrained and from kinematic to static. Significant improvements in ambiguity resolution and positioning performance are achievable upon integrating L5-data of IRNSS with GPS

    GLONASS CDMA L3 ambiguity resolution and positioning

    Get PDF
    A first assessment of GLONASS CDMA L3 ambiguity resolution and positioning performance is provided. Our analyses are based on GLONASS L3 data from the satellite pair SVNs 755-801, received by two JAVAD receivers at Curtin University, Perth, Australia. In our analyses, four different versions of the two-satellite model are applied: the geometry-free model, the geometry-based model , the height-constrained geometry-based model, and the geometry-fixed model. We study the noise characteristics (carrier-to-noise density, measurement precision), the integer ambiguity resolution performance (success rates and distribution of the ambiguity residuals), and the positioning performance (ambiguity float and ambiguity fixed). The results show that our empirical outcomes are consistent with their formal counterparts and that the GLONASS data have a lower noise level than that of GPS, particularly in case of the code data. This difference is not only seen in the noise levels but also in their onward propagation to the ambiguity time series and ambiguity residuals distribution

    DIA-datasnooping and identifiability

    Get PDF
    In this contribution, we present and analyze datasnooping in the context of the DIA method. As the DIA method for the detection, identification and adaptation of mismodelling errors is concerned with estimation and testing, it is the combination of both that needs to be considered. This combination is rigorously captured by the DIA estimator. We discuss and analyze the DIA-datasnooping decision probabilities and the construction of the corresponding partitioning of misclosure space. We also investigate the circumstances under which two or more hypotheses are nonseparable in the identification step. By means of a theorem on the equivalence between the nonseparability of hypotheses and the inestimability of parameters, we demonstrate that one can forget about adapting the parameter vector for hypotheses that are nonseparable. However, as this concerns the complete vector and not necessarily functions of it, we also show that parameter functions may exist for which adaptation is still possible. It is shown how this adaptation looks like and how it changes the structure of the DIA estimator. To demonstrate the performance of the various elements of DIA-datasnooping, we apply the theory to some selected examples. We analyze how geometry changes in the measurement setup affect the testing procedure, by studying their partitioning of misclosure space, the decision probabilities and the minimal detectable and identifiable biases. The difference between these two minimal biases is highlighted by showing the difference between their corresponding contributing factors. We also show that if two alternative hypotheses, say (Formula presented.) and (Formula presented.), are nonseparable, the testing procedure may have different levels of sensitivity to (Formula presented.)-biases compared to the same (Formula presented.)-biases

    Low-cost, high-precision, single-frequency GPS–BDS RTK positioning

    Get PDF
    The integration of the Chinese BDS with other systems, such as the American GPS, makes precise RTK positioning possible with low-cost receivers. We investigate the performance of low-cost ublox receivers, which cost a few hundred USDs, while making use of L1 GPS + B1 BDS data in Dunedin, New Zealand. Comparisons will be made to L1 + L2 GPS and survey-grade receivers which cost several thousand USDs. The least-squares variance component estimation procedure is used to determine the code and phase variances and covariances of the receivers and thus formulate a realistic stochastic model. Otherwise, the ambiguity resolution and hence positioning performance would deteriorate. For the same reasons, the existence of receiver-induced time correlation is also investigated. The low-cost RTK performance is then evaluated by formal and empirical ambiguity success rates and positioning precisions. It will be shown that the code and phase precision of the low-cost receivers can be significantly improved by using survey-grade antennas, since they have better signal reception and multipath suppression abilities in comparison with low-cost patch antennas. It will also be demonstrated that the low-cost receivers can achieve competitive ambiguity resolution and positioning performance to survey-grade dual-frequency GPS receivers

    Five-frequency Galileo long-baseline ambiguity resolution with multipath mitigation

    Get PDF
    © 2018, The Author(s). For long-baseline over several hundreds of kilometers, the ionospheric delays that cannot be fully removed by differencing observations between receivers hampers rapid ambiguity resolution. Compared with forming ionospheric-free linear combination using dual- or triple-frequency observations, estimating ionospheric delays using uncombined observations keeps all the information of the observations and allows extension of the strategy to any number of frequencies. As the number of frequencies has increased for the various GNSSs, it is possible to study long-baseline ambiguity resolution performance using up to five frequencies with uncombined observations. We make use of real Galileo observations on five frequencies with a sampling interval of 1 s. Two long baselines continuously receiving signals from six Galileo satellites during corresponding test time intervals were processed to study the formal and empirical ambiguity success rates in case of full ambiguity resolution (FAR). The multipath effects are mitigated using the measuremen ts of another day when the constellation repeats. Compared to the results using multipath-uncorrected Galileo observations, it is found that the multipath mitigation plays an important role in improving the empirical ambiguity success rates. A high number of frequencies are also found to be helpful to achieve high ambiguity success rate within a short time. Using multipath-uncorrected observations on two, three, four and five frequencies, the mean empirical success rates are found to be about 73, 88, 91, and 95% at 10 s, respectively, while the values are increased to higher than 86, 95, 98, and 99% after mitigating the multipath effects

    How Abnormal Are the PDFs of the DIA Method: A Quality Description in the Context of GNSS

    No full text
    The DIA-method, for the detection, identification and adaptation of modeling errors, has been widely used in a broad range of applications including the quality control of geodetic networks and the integrity monitoring of GNSS models. The DIA-method combines two key statistical inference tools, estimation and testing. Through the former, one seeks estimates of the parameters of interest, whereas through the latter, one validates these estimates and corrects them for biases that may be present. As a result of this intimate link between estimation and testing, the quality of the DIA outcome x¯ must also be driven by the probabilistic characteristics of both estimation and testing. In practice however, the evaluation of the quality of x¯ is never carried out as such. Instead, use is made of the probability density function (PDF) of the estimator under the identified hypothesis, say x^i , thereby thus neglecting the conditioning process that led to the decision to accept the ith hypothesis. In this contribution, we conduct a comparative study of the probabilistic properties of x¯ and x^i . Our analysis will be carried out in the framework of GNSS-based positioning. We will also elaborate on the circumstances under which the distribution of the estimator x^i provides either poor or reasonable approximations to that of the DIA-estimator x¯
    corecore