91 research outputs found

    The Bending Magnets for the Proton Transfer Line of CNGS

    Get PDF
    The project "CERN neutrinos to Gran Sasso (CNGS)", a collaboration between CERN and the INFN (Gran Sasso Laboratory) in Italy, will study neutrino oscillations in a long base-line experiment. High-energy protons will be extracted from the CERN SPS accelerator, transported through a 727 m long transfer line and focused onto a graphite target to produce a beam of pions and kaons and subsequently neutrinos. The transfer line requires a total of 78 dipole magnets. They were produced in the framework of an in-kind contribution of Germany via DESY to the CNGS project. The normal conducting dipoles, built from laminated steel cores and copper coils, have a core length of 6.3 m, a 37 mm gap height and a nominal field range of 1.38 T - 1.91 T at a maximum current of 4950 A. The magnet design was a collaboration between CERN and BINP. The half-core production was subcontracted to EFREMOV Institute; the coil fabrication, magnet assembly and the field measurements were concluded at BINP in June 2004. The main design issues and results of the acceptance tests, including mechanical, electrical and magnetic field measurements, are discussed

    Fundamentals of interface phenomena in advanced bulk nanoscale materials

    Get PDF
    The review is devoted to a study of interface phenomena influencing advanced properties of nanoscale materials processed by means of severe plastic deformation, high-energy ball milling and their combinations. Interface phenomena include processes of interface defect structure relaxation from a highly nonequilibrium state to an equilibrium condition, grain boundary phase transformations and enhanced grain boundary and triple junction diffusivity. On the basis of an experimental investigation, a theoretical description of the key interfacial phenomena controlling the functional properties of advanced bulk nanoscale materials has been conducted. An interface defect structure investigation has been performed by TEM, high-resolution x-ray diffraction, atomic simulation and modeling. The problem of a transition from highly non-equilibrium state to an equilibrium one, which seems to be responsible for low thermostability of nanoscale materials, was studied. Also enhanced grain boundary diffusivity is addressed. Structure recovery and dislocation emission from grain boundaries in nanocrystalline materials have been investigated by analytical methods and modeling

    Comparative analysis of the influence of Corvitin and Lipoflavon on parameters of energy metabolism in the brain of rats with experimental severe craniocerebral trauma

    No full text
    Hyperglycemia in rats develops in acute period of severe craniocerebral trauma: glucose consumption in rats’ brain increases, lactic acidosis develops, and the content of ATP decreases. Piracetam (200 mg/kg) does not eliminate hyperglycaemia but normalizes the level of intermediates of energy metabolism. Corvitin (100–150 mg/kg) eliminates hyperglycemia, normalizes the pyruvic and lactic acids, significantly increases the level of ATP. Lipoflavon (370 mg/kg) normalizes the blood level of glucose, increases the concentration of pyruvic and lactic acids, but it is worse than corvitin in its influence on ATP. Antihyperglycemic effect of lipoflavon is weaker at a dose of 555 mg/kg. The results illustrate craniocerebral effect of quercetin preparations

    Microstructural evolution and electro-resistivity in HPT nickel

    No full text
    Microstructural evolution of pure nickel was studied in the very early stages of high-pressure torsioning. It is shown that the microhardness becomes sufficiently homogeneous across the disks after one-half of a complete revolution. An analysis by EBSD supports this finding showing almost identical EBSD microstructures for HPT through more than 0.5 rotation. Electrical resistivity measurements correlate with the microhardness and EBSD data showing a maximum value at the strain corresponding to 0.5 rotation. The results suggest that the main source of electron scattering is point defects and dislocations
    • 

    corecore