1,771 research outputs found

    Cavity quantum electro-optics. II. Input-output relations between traveling optical and microwave fields

    Full text link
    In the previous paper [M. Tsang, Phys. Rev. A 81, 063837 (2010), e-print arXiv:1003.0116], I proposed a quantum model of a cavity electro-optic modulator, which can coherently couple an optical cavity mode to a microwave resonator mode and enable novel quantum operations on the two modes, including laser cooling of the microwave mode, electro-optic entanglement, and backaction-evading optical measurement of a microwave quadrature. In this sequel, I focus on the quantum input-output relations between traveling optical and microwave fields coupled to a cavity electro-optic modulator. With red-sideband optical pumping, the relations are shown to resemble those of a beam splitter for the traveling fields, so that in the ideal case of zero parasitic loss and critical coupling, microwave photons can be coherently up-converted to "flying" optical photons with unit efficiency, and vice versa. With blue-sideband pumping, the modulator acts as a nondegenerate parametric amplifier, which can generate two-mode squeezing and hybrid entangled photon pairs at optical and microwave frequencies. These fundamental operations provide a potential bridge between circuit quantum electrodynamics and quantum optics.Comment: 12 pages, 10 figures, v2: updated and submitte

    A Noise Investigation of Tunnel-Diode Microwave Amplifiers

    Get PDF
    An analysis and derivation of the noise figure of a tunnel-diode microwave amplifier are presented. The agreement between the measured noise figure and the theoretical results is an indirect check on the existence of full shot noise in germanium tunnel diodes at microwave frequencies. The limiting noise temperature of the amplifier is eI0R/2k, and can be approached by using diodes with small (RC) products in which the extreme overcoupling (load mismatch) and high gain can be achieved simultaneously

    Nonlinear optical properties of photoresists for projection lithography

    Get PDF
    Optical beams are self-focused and self-trapped upon initiating crosslinking in photoresists. This nonlinear optical phenomenon is apparent only for low average optical intensities and produces index of refraction changes as large as 0.04. We propose using the self-focusing and self-trapping phenomenon in projection photolithography to enhance the resolution and depth of focus

    AlGaAs inverted strip buried heterostructure lasers

    Get PDF
    Inverted strip buried heterostructure lasers have been fabricated. These lasers have threshold currents and quantum efficiencies that are comparable to those of conventional buried heterostructure lasers. The optical mode is confined by a weakly guiding strip loaded waveguide which makes possible operation in the fundamental transverse mode for larger stripe widths than is possible for conventional buried heterostructure lasers. Scattering of the laser light by irregularities in the sidewalls of the waveguide, which can be a serious problem in conventional buried heterostructure lasers, is also greatly reduced in these lasers

    Passive Mode-Locking of Monolithic InGaAs/AlGaAs Double Quantum Well Lasers at 42GHz Repetition Rate

    Get PDF
    Pulse trains with a 42GHz repetition rate were generated by monolithic InGaAs/AlGaAs double quantum well lasers at a wavelength of 985 [angstroms]. The cavity was electrically divided into three regions, one providing gain and the other two providing saturable absorption. The optical modulation has a depth greater than 98% and full-width at half-maximum under 6ps, and bias conditions for sustained mode-locking are determined

    Diffraction coupled phase-locked semiconductor laser array

    Get PDF
    A new monolithic, diffraction coupled phase-locked semiconductor laser array has been fabricated. Stable narrow far-field patterns (~3Ā°) and peak power levels of 1 W have been obtained for 100-Āµm-wide devices with threshold currents as low as 250 mA. Such devices may be useful in applications where high power levels and stable radiation patterns are needed

    Large optical cavity AlGaAs buried heterostructure window lasers

    Get PDF
    Large optical cavity buried heterostructure window lasers in which only the transparent AlGaAs waveguiding layers, and not the active layer, extend to the laser mirrors have been fabricated. These lasers have threshold currents and differential quantum efficiencies comparable to those of regular large optical cavity buried heterostructure lasers in which the active region extends to the laser mirrors, however the window lasers have been operated under pulsed conditions at three times the power at which otherwise identical lasers without windows degrade by catastrophic mirror damage

    Arrangement for damping the resonance in a laser diode

    Get PDF
    An arrangement for damping the resonance in a laser diode is described. This arrangement includes an additional layer which together with the conventional laser diode form a structure (35) of a bipolar transistor. Therein, the additional layer serves as the collector, the cladding layer next to it as the base, and the active region and the other cladding layer as the emitter. A capacitor is connected across the base and the collector. It is chosen so that at any frequency above a certain selected frequency which is far below the resonance frequency the capacitor impedance is very low, effectively shorting the base to the collector

    Narrow stripe AlGaAs lasers using double current confinement

    Get PDF
    Gain guided AlGaAs lasers in which the current is restricted to flow between two narrow stripes have been fabricated. The double current confinement configuration, which is fabricated by a selective meltbackā€growth technique, enables the current injection to be restricted to a very narrow section of the active layer. These lasers exhibit very strong antiguiding and operate in many longitudinal modes, which are characteristics of narrow stripe lasers. Potential applications of the twin vertical stripe configuration include arrays of optically coupled lasers and, if a real index waveguiding mechanism can be combined with double current confinement, low threshold lasers

    Active coupled-resonator optical waveguides. I. Gain enhancement and noise

    Get PDF
    We use a tight-binding formalism in the time domain to analyze the effect of resonant gain enhancement and spontaneous emission noise in amplifying coupled-resonator optical waveguides (CROWs). We find the net amplification of a wave propagating in a CROW does not always vary with the group velocity, and depends strongly on the termination and excitation of these structures. The signal-to-noise ratio and noise figure of CROW amplifiers are derived in the tight-binding formalism as well. The physical interpretations and practical consequences of the theoretical results are discussed
    • ā€¦
    corecore