4,885 research outputs found

    A Study of Factors Influencing Green IT Practices, Buying and Subscription Behaviours of Computer and Mobile Devices, and Streaming Services

    Get PDF
    The pressure of environmental sustainability and the introduction of strict transnational and local environment laws, regulations and targets have catalysed the emergency of Green IT. On individual level, Green IT can be achieved through environmentally responsible behaviour to purchase, use and disposal of products and services without damaging the environment. This research aims to investigate the Green IT behaviour of young consumers including their day-to-day Green IT practices, buying behaviour of mobile and computer devices and subscription behaviour of streaming services. The findings show that: 1) Understanding of Green IT practices (specific knowledge) has a positive influence on PBC, 2) Consumer’s PBC has a positive influence on Green IT behaviour and 3) The communication strategy has a positive influence on PBC. Research results also show that young consumers’ buying and subscribing decision are strongly influenced by factors such as appearance, specification, features, content and price than Green IT factors. Available at: https://aisel.aisnet.org/pajais/vol11/iss1/4

    Optical studies of carrier and phonon dynamics in Ga_{1-x}Mn_{x}As

    Full text link
    We present a time-resolved optical study of the dynamics of carriers and phonons in Ga_{1-x}Mn_{x}As layers for a series of Mn and hole concentrations. While band filling is the dominant effect in transient optical absorption in low-temperature-grown (LT) GaAs, band gap renormalization effects become important with increasing Mn concentration in Ga_{1-x}Mn_{x}As, as inferred from the sign of the absorption change. We also report direct observation on lattice vibrations in Ga1-xMnxAs layers via reflective electro-optic sampling technique. The data show increasingly fast dephasing of LO phonon oscillations for samples with increasing Mn and hole concentration, which can be understood in term of phonon scattering by the holes.Comment: 13 pages, 3 figures replaced Fig.1 after finding a mistake in previous versio

    Ultrafast spectroscopy of propagating coherent acoustic phonons in GaN/InGaN heterostructures

    Full text link
    We show that large amplitude, coherent acoustic phonon wavepackets can be generated and detected in Inx_xGa1x_{1-x}N/GaN epilayers and heterostructures in femtosecond pump-probe differential reflectivity experiments. The amplitude of the coherent phonon increases with increasing Indium fraction xx and unlike other coherent phonon oscillations, both \textit{amplitude} and \textit{period} are strong functions of the laser probe energy. The amplitude of the oscillation is substantially and almost instantaneously reduced when the wavepacket reaches a GaN-sapphire interface below the surface indicating that the phonon wavepackets are useful for imaging below the surface. A theoretical model is proposed which fits the experiments well and helps to deduce the strength of the phonon wavepackets. Our model shows that localized coherent phonon wavepackets are generated by the femtosecond pump laser in the epilayer near the surface. The wavepackets then propagate through a GaN layer changing the local index of refraction, primarily through the Franz-Keldysh effect, and as a result, modulate the reflectivity of the probe beam. Our model correctly predicts the experimental dependence on probe-wavelength as well as epilayer thickness.Comment: 11 pages, 14 figure

    Holographic interacting dark energy in the braneworld cosmology

    Full text link
    We investigate a model of brane cosmology to find a unified description of the radiation-matter-dark energy universe. It is of the interacting holographic dark energy with a bulk-holographic matter χ\chi. This is a five-dimensional cold dark matter, which plays a role of radiation on the brane. Using the effective equations of state ωΛeff\omega^{\rm eff}_{\rm \Lambda} instead of the native equations of state ωΛ\omega_{\rm \Lambda}, we show that this model cannot accommodate any transition from the dark energy with ωΛeff1\omega^{\rm eff}_{\rm \Lambda}\ge-1 to the phantom regime ωΛeff<1\omega^{\rm eff}_{\rm \Lambda}<-1. Furthermore, the case of interaction between cold dark matter and five dimensional cold dark matter is considered for completeness. Here we find that the redshift of matter-radiation equality zeqz_{\rm eq} is the same order as zeqob=2.4×104Ωmh2z^{\rm ob}_{\rm eq}=2.4\times10^{4} \Omega_{\rm m}h^2. Finally, we obtain a general decay rate Γ\Gamma which is suitable for describing all interactions including the interaction between holographic dark energy and cold dark matter.Comment: 17 pages, 4 figure

    KMT-2016-BLG-2052L: Microlensing Binary Composed of M Dwarfs Revealed from a Very Long Time-scale Event

    Full text link
    We present the analysis of a binary microlensing event KMT-2016-BLG-2052, for which the lensing-induced brightening of the source star lasted for 2 seasons. We determine the lens mass from the combined measurements of the microlens parallax \pie and angular Einstein radius \thetae. The measured mass indicates that the lens is a binary composed of M dwarfs with masses of M10.34 MM_1\sim 0.34~M_\odot and M20.17 MM_2\sim 0.17~M_\odot. The measured relative lens-source proper motion of μ3.9 mas yr1\mu\sim 3.9~{\rm mas}~{\rm yr}^{-1} is smaller than 5 mas yr1\sim 5~{\rm mas}~{\rm yr}^{-1} of typical Galactic lensing events, while the estimated angular Einstein radius of \thetae\sim 1.2~{\rm mas} is substantially greater than the typical value of 0.5 mas\sim 0.5~{\rm mas}. Therefore, it turns out that the long time scale of the event is caused by the combination of the slow μ\mu and large \thetae rather than the heavy mass of the lens. From the simulation of Galactic lensing events with very long time scales (tE100t_{\rm E}\gtrsim 100 days), we find that the probabilities that long time-scale events are produced by lenses with masses 1.0 M\geq 1.0~M_\odot and 3.0 M\geq 3.0~M_\odot are 19%\sim 19\% and 2.6\%, respectively, indicating that events produced by heavy lenses comprise a minor fraction of long time-scale events. The results indicate that it is essential to determine lens masses by measuring both \pie and \thetae in order to firmly identify heavy stellar remnants such as neutron stars and black holes.Comment: 9 pages, 11 figure

    Vortex solutions of a Maxwell-Chern-Simons field coupled to four-fermion theory

    Full text link
    We find the static vortex solutions of the model of Maxwell-Chern-Simons gauge field coupled to a (2+1)-dimensional four-fermion theory. Especially, we introduce two matter currents coupled to the gauge field minimally: the electromagnetic current and a topological current associated with the electromagnetic current. Unlike other Chern-Simons solitons the N-soliton solution of this theory has binding energy and the stability of the solutions is maintained by the charge conservation laws.Comment: 7 pages, harvmac, To be published in Phys. Rev. D5

    Alternating-Spin Ladders

    Full text link
    We investigate a two-leg spin ladder system composed of alternating-spin chains with two-different kind of spins. The fixed point properties are discussed by using spin-wave analysis and non-linear sigma model techniques. The model contains various massive phases, reflecting the interplay between the bond-alternation and the spin-alternation.Comment: 6 pages, revtex, to appear in PR
    corecore