4,946 research outputs found

    Better age estimations using UV-optical colours: breaking the age-metallicity degeneracy

    Get PDF
    We demonstrate that the combination of GALEX UV photometry in the FUV (~1530 angstroms) and NUV (~2310 angstroms) passbands with optical photometry in the standard U,B,V,R,I filters can efficiently break the age-metallicity degeneracy. We estimate well-constrained ages, metallicities and their associated errors for 42 GCs in M31, and show that the full set of FUV,NUV,U,B,V,R,I photometry produces age estimates that are ~90 percent more constrained and metallicity estimates that are ~60 percent more constrained than those produced by using optical filters alone. The quality of the age constraints is comparable or marginally better than those achieved using a large number of spectrscopic indices.Comment: Published in MNRAS (2007), 381, L74 (doi: 10.1111/j.1745-3933.2007.00370.x

    Electromotive force and internal resistance of an electron pump

    Full text link
    We present a scattering theory of the electromotive force and internal resistance of an electron pump. The characterization of the device performance in terms of only two parameters requires the assumption of incoherent multiple scattering within the circuit and complete thermalization among electrons moving in a given direction. The electromotive force is shown to be of the order of the driving frequency in natural units. In an open setup, the electromotive force adds to the voltage difference between reservoirs to drive the current, both facing a contact resistance which is absent in the case of a closed circuit of uniform width

    Exactly Soluble Dynamics of (p,q) String Near Macroscopic Fundamental Strings

    Full text link
    We study dynamics of Type IIB bound-state of a Dirichlet string and n fundamental strings in the background of N fundamental strings. Because of supergravity potential, the bound-state string is pulled to the background fundamental strings, whose motion is described by open string rolling radion field. The string coupling can be made controllably weak and, in the limit 1<<gst2n<<gst2N1 << g^2_{\rm st} n << g^2_{\rm st} N, the bound-state energy involved is small compared to the string scale. We thus propose rolling dynamics of open string radion in this system as an exactly solvable analog for rolling dynamics of open string tachyon in decaying D-brane. The dynamics bears a novel feature that the worldsheet electric field increases monotonically to the critical value as the bound-state string falls into the background string. Close to the background string, D string constituent inside the bound-state string decouples from fundamental string constituents.Comment: 27p, 2 figure

    Suppression of collisional shifts in a strongly interacting lattice clock

    Full text link
    Optical lattice clocks have the potential for extremely high frequency stability owing to the simultaneous interrogation of many atoms, but this precision may come at the cost of systematic inaccuracy due to atomic interactions. Density-dependent frequency shifts can occur even in a clock that uses fermionic atoms if they are subject to inhomogeneous optical excitation [1, 2]. Here we present a seemingly paradoxical solution to this problem. By dramatically increasing the strength of atomic interactions, we suppress collisional shifts in lattice sites containing NN > 1 atoms; strong interactions introduce an energy splitting into the system, and evolution into a many-particle state in which collisions occur is inhibited. We demonstrate the effectiveness of this approach with the JILA Sr lattice clock by reducing both the collisional frequency shift and its uncertainty by more than a factor of ten [3], to the level of 101710^{-17}. This result eliminates the compromise between precision and accuracy in a many-particle system, since both will continue to improve as the particle number increases.Comment: 13 pages, 6 figure

    Supersymetry on the Noncommutative Lattice

    Get PDF
    Built upon the proposal of Kaplan et.al. [hep-lat/0206109], we construct noncommutative lattice gauge theory with manifest supersymmetry. We show that such theory is naturally implementable via orbifold conditions generalizing those used by Kaplan {\sl et.al.} We present the prescription in detail and illustrate it for noncommutative gauge theories latticized partially in two dimensions. We point out a deformation freedom in the defining theory by a complex-parameter, reminiscent of discrete torsion in string theory. We show that, in the continuum limit, the supersymmetry is enhanced only at a particular value of the deformation parameter, determined solely by the size of the noncommutativity.Comment: JHEP style, 1+22 pages, no figure, v2: two references added, v3: three more references adde

    Evolución histórica de las metáforas en el concepto de función

    Get PDF
    El conocimiento matemático está constituido por conceptos, metáforas, procesos y hábitos o actitudes, y se puede decir que un texto es bueno o un programa es completo cuando todos estos elementos son adecuadamente atendidos. Desde que Lakoff y Johnson (1991) pusieron de manifiesto la importancia del pensamiento metafórico, entendido como la interpretación de un campo de experiencias en términos de otro ya conocido, el papel de este en la formación de los conceptos matemáticos, es un tema que cada vez tiene más relevancia para la investigación en didáctica de las matemáticas. En este trabajo, enmarcado en un Proyecto de Investigación sobre los Obstáculos Epistemológicos, se analiza y discute la evolución histórica de las metáforas ligadas al concepto de función, en particular las asociadas a la gráfica de una función

    Variable stars in the Open Cluster M11 (NGC 6705)

    Full text link
    V-band time-series CCD photometric observations of the intermediate-age open cluster M11 were performed to search for variable stars. Using these time-series data, we carefully examined light variations of all stars in the observing field. A total of 82 variable stars were discovered, of which 39 stars had been detected recently by Hargis et al. (2005). On the basis of observational properties such as variable period, light curve shape, and position on a color-magnitude diagram, we classified their variable types as 11 delta Scuti-type pulsating stars, 2 gamma Doradus-type pulsating stars, 40 W UMa-type contact eclipsing binaries, 13 Algol-type detached eclipsing binaries, and 16 eclipsing binaries with long period. Cluster membership for each variable star was deduced from the previous proper motion results (McNamara et al. 1977) and position on the color-magnitude diagram. Many pulsating stars and eclipsing binaries in the region of M11 are probable members of the cluster.Comment: 23 pages, 9 figures, 3 tables, and accepted for publication in PAS

    Interacting Open Wilson Lines in Noncommutative Field Theories

    Full text link
    In noncommutative field theories, it was known that one-loop effective action describes propagation of non-interacting open Wilson lines, obeying the flying dipole's relation. We show that two-loop effective action describes cubic interaction among `closed string' states created by open Wilson lines. Taking d-dimensional noncommutative [\Phi^3] theory as the simplest setup, we compute nonplanar contribution at low-energy and large noncommutativity limit. We find that the contribution is expressible in a remarkably simple cubic interaction involving scalar open Wilson lines only and nothing else. We show that the interaction is purely geometrical and noncommutative in nature, depending only on sizes of each open Wilson line.Comment: v1: 27 pages, Latex, 7 .eps figures v2: minor wording change + reference adde
    corecore