29,913 research outputs found

    Extreme Mass Ratio Binary: Radiation reaction and gravitational waveform

    Get PDF
    For a successful detection of gravitational waves by LISA, it is essential to construct theoretical waveforms in a reliable manner. We discuss gravitational waves from an extreme mass ratio binary system which is expected to be a promising target of the LISA project. The extreme mass ratio binary is a binary system of a supermassive black hole and a stellar mass compact object. As the supermassive black hole dominates the gravitational field of the system, we suppose that the system might be well approximated by a metric perturbation of a Kerr black hole. We discuss a recent theoretical progress in calculating the waveforms from such a system.Comment: Classical and Quantum Gravity 22 (2005) S375-S379, Proceedings for 5th International LISA Symposiu

    Approximating the inspiral of test bodies into Kerr black holes

    Get PDF
    We present a new approximate method for constructing gravitational radiation driven inspirals of test-bodies orbiting Kerr black holes. Such orbits can be fully described by a semi-latus rectum pp, an eccentricity ee, and an inclination angle ι\iota; or, by an energy EE, an angular momentum component LzL_z, and a third constant QQ. Our scheme uses expressions that are exact (within an adiabatic approximation) for the rates of change (p˙\dot{p}, e˙\dot{e}, ι˙\dot{\iota}) as linear combinations of the fluxes (E˙\dot{E}, Lz˙\dot{L_z}, Q˙\dot{Q}), but uses quadrupole-order formulae for these fluxes. This scheme thus encodes the exact orbital dynamics, augmenting it with approximate radiation reaction. Comparing inspiral trajectories, we find that this approximation agrees well with numerical results for the special cases of eccentric equatorial and circular inclined orbits, far more accurate than corresponding weak-field formulae for (p˙\dot{p}, e˙\dot{e}, ι˙\dot{\iota}). We use this technique to study the inspiral of a test-body in inclined, eccentric Kerr orbits. Our results should be useful tools for constructing approximate waveforms that can be used to study data analysis problems for the future LISA gravitational-wave observatory, in lieu of waveforms from more rigorous techniques that are currently under development.Comment: 15 pages, 5 figures, submitted to PR

    Lifetime Adherence to Physical Activity Recommendations and Fall Occurrence in Community-dwelling Older Adults: a Retrospective Cohort Study

    Get PDF
    Falling is a major health concern for community-dwelling older adults. Regular physical activity has been proposed to prevent falls. The aim of this study was to assess whether the achievement of the 2004 UK Department of Health physical activity recommendations over a lifetime had a protective effect against falling in older people. 313 community-dwelling older adults completed a questionnaire about lifetime physical activity and fall occurrence. There were significantly fewer falls in those who had led an active lifestyle compared to those who had not (χ2Yates=4.568, p=0.033), with a lower relative risk of fall occurrence for the active respondents (RR=0.671) compared to the inactive (RR=1.210). Of those who were sufficiently active in their early adulthood, the decade where there was the biggest decrease in remaining active enough was in the 60s. It is concluded that an active lifestyle may have decreased the likelihood of having a fall in older ag

    Computing radiation from Kerr black holes: Generalization of the Sasaki-Nakamura equation

    Full text link
    As shown by Teukolsky, the master equation governing the propagation of weak radiation in a black hole spacetime can be separated into four ordinary differential equations, one for each spacetime coordinate. (``Weak'' means the radiation's amplitude is small enough that its own gravitation may be neglected.) Unfortunately, it is difficult to accurately compute solutions to the separated radial equation (the Teukolsky equation), particularly in a numerical implementation. The fundamental reason for this is that the Teukolsky equation's potentials are long ranged. For non-spinning black holes, one can get around this difficulty by applying transformations which relate the Teukolsky solution to solutions of the Regge-Wheeler equation, which has a short-ranged potential. A particularly attractive generalization of this approach to spinning black holes for gravitational radiation (spin weight s = -2) was given by Sasaki and Nakamura. In this paper, I generalize Sasaki and Nakamura's results to encompass radiation fields of arbitrary integer spin weight, and give results directly applicable to scalar (s = 0) and electromagnetic (s = -1) radiation. These results may be of interest for studies of astrophysical radiation processes near black holes, and of programs to compute radiation reaction forces in curved spacetime.Comment: 10 pages, no figures, to appear in Phys. Rev. D. Present version updates the references, fixes some typos, and corrects some of the Introductory tex

    Perturbative Approach to an orbital evolution around a Supermassive black hole

    Get PDF
    A charge-free, point particle of infinitesimal mass orbiting a Kerr black hole is known to move along a geodesic. When the particle has a finite mass or charge, it emits radiation which carries away orbital energy and angular momentum, and the orbit deviates from a geodesic. In this paper we assume that the deviation is small and show that the half-advanced minus half-retarded field surprisingly provides the correct radiation reaction force, in a time-averaged sense, and determines the orbit of the particle.Comment: accepted for publication in the Physical Revie

    Spatial Distribution of Metal Emissions in SNR 3C 397 Viewed with Chandra and XMM

    Full text link
    We present X-ray equivalent width imaging of the supernova remnant (SNR) 3C 397 for Mg He\alpha, Si He\alpha, S He\alpha, and Fe K\alpha complex lines with the Chandra and XMM-Newton observations. The images reveal that the heavier the element is, the smaller the extent of the element distribution is. The Mg emission is evidently enhanced in the southeastern blow-out region, well along the radio boundary there, and appears to partially envelope the eastern Fe knot. Two bilateral hat-like Si line-emitting structures are along the northern and southern borders, roughly symmetric with respect to the southeast-northwest elongation axis. An S line-emitting shell is located just inner to the northern radio and IR shell, indicating of a layer of reversely shocked sulphur in the ejecta. A few enhanced Fe features are basically aligned along the diagonal of the rectangular shape of the SNR, which implicates an early asymmetric SN explosion.Comment: 4 pages, 4 figures, appears in Science China Physics, Mechanics & Astronomy, 2010, 53 (Suppl.1), 267-27

    Nearly horizon skimming orbits of Kerr black holes

    Get PDF
    An unusual set of orbits about extreme Kerr black holes resides at the Boyer-Lindquist radius r=Mr = M, the coordinate of the hole's event horizon. These ``horizon skimming'' orbits have the property that their angular momentum LzL_z {\it increases} with inclination angle, opposite to the familiar behavior one encounters at larger radius. In this paper, I show that this behavior is characteristic of a larger family of orbits, the ``nearly horizon skimming'' (NHS) orbits. NHS orbits exist in the very strong field of any black hole with spin a\agt 0.952412M. Their unusual behavior is due to the locking of particle motion near the event horizon to the hole's spin, and is therefore a signature of the Kerr metric's extreme strong field. An observational hallmark of NHS orbits is that a small body spiraling into a Kerr black hole due to gravitational-wave emission will be driven into orbits of progressively smaller inclination angle, toward the equator. This is in contrast to the ``normal'' behavior. For circular orbits, the change in inclination is very small, and unlikely to be of observational importance. I argue that the change in inclination may be considerably larger when one considers the evolution of inclined eccentric orbits. If this proves correct, then the gravitational waves produced by evolution through the NHS regime may constitute a very interesting and important probe of the strong-field nature of rotating black holes.Comment: 9 pages, 5 figures, accepted for publication in PR

    The Sunyaev-Zeldovich Effect and Its Cosmological Significance

    Get PDF
    Comptonization of the cosmic microwave background (CMB) radiation by hot gas in clusters of galaxies - the Sunyaev-Zeldovich (S-Z) effect - is of great astrophysical and cosmological significance. In recent years observations of the effect have improved tremendously; high signal-to-noise images of the effect (at low microwave frequencies) can now be obtained by ground-based interferometric arrays. In the near future, high frequency measurements of the effect will be made with bolomateric arrays during long duration balloon flights. Towards the end of the decade the PLANCK satellite will extensive S-Z surveys over a wide frequency range. Along with the improved observational capabilities, the theoretical description of the effect and its more precise use as a probe have been considerably advanced. I review the current status of theoretical and observational work on the effect, and the main results from its use as a cosmological probe.Comment: Invited review; in proceedings of the Erice NATO/ASI `Astrophysical Sources of High Energy Particles and Radiation'; 11 pages, 3 figure
    • …
    corecore