40,062 research outputs found

    Quantitation of buried contamination by use of solvents

    Get PDF
    Experiments directed at determining the potential of reclaimed silicone polymers for reuse are described

    Quantitation of buried contamination by use of solvents

    Get PDF
    Spore recovery form cured silicone potting compounds using amine solvents to degrade the cured polymers was investigated. A complete list of solvents and a description of the effect of each on two different silicone polymers is provided

    Pressure-tuned First-order Phase Transition and Accompanying Resistivity Anomaly in CeZn_{1-\delta}Sb_{2}

    Full text link
    The Kondo lattice system CeZn_{0.66}Sb_{2} is studied by the electrical resistivity and ac magnetic susceptibility measurements at several pressures. At P=0 kbar, ferromagnetic and antiferromagnetic transitions appear at 3.6 and 0.8 K, respectively. The electrical resistivity at T_N dramatically changes from the Fisher-Langer type (ferromagnetic like) to the Suzaki-Mori type near 17 kbar, i.e., from a positive divergence to a negative divergence in the temperature derivative of the resistivity. The pressure-induced SM type anomaly, which shows thermal hysteresis, is easily suppressed by small magnetic field (1.9 kOe for 19.8 kbar), indicating a weakly first-order nature of the transition. By subtracting a low-pressure data set, we directly compare the resistivity anomaly with the SM theory without any assumption on backgrounds, where the negative divergence in d\rho/dT is ascribed to enhanced critical fluctuations in the presence of superzone gaps.Comment: 5 pages, 4 figures; journal-ref adde

    Chiral Hierarchies, Compositeness and the Renormalization Group

    Get PDF
    A wide class of models involve the fine--tuning of significant hierarchies between a strong--coupling ``compositeness'' scale, and a low energy dynamical symmetry breaking scale. We examine the issue of whether such hierarchies are generally endangered by Coleman--Weinberg instabilities. A careful study using perturbative two--loop renormalization group methods finds that consistent large hierarchies are not generally disallowed.Comment: 22 pp + 5 figs (uuencoded and submitted separately), SSCL-Preprint-490; FERMI-PUB-93/035-

    Cyclotron Resonance in the Layered Perovskite Superconductor Sr2RuO4

    Full text link
    We have measured the cyclotron masses in Sr2RuO4 through the observation of periodic-orbit-resonances - a magnetic resonance technique closely related to cyclotron resonance. We obtain values for the alpha, beta and gamma Fermi surfaces of (4.33+/-0.05)me, (5.81+/-0.03)me and (9.71+/-0.11)me respectively. The appreciable differences between these results and those obtained from de Haas- van Alphen measurements are attributable to strong electron-electron interactions in this system. Our findings appear to be consistent with predictions for a strongly interacting Fermi liquid; indeed, semi-quantitative agreement is obtained for the electron pockets beta and gamma.Comment: 4 pages + 3 figure

    Characterization of the S = 9 excited state in Fe8Br8 by Electron Paramagnetic Resonance

    Full text link
    High Frequency electron paramagnetic resonance has been used to observe the magnetic dipole, Δ\Delta Ms_s = ±\pm 1, transitions in the S=9S = 9 excited state of the single molecule magnet Fe8_8Br8_8. A Boltzmann analysis of the measured intensities locates it at 24 ±\pm 2 K above the S=10S = 10 ground state, while the line positions yield its magnetic parameters D = -0.27 K, E = ±\pm0.05 K, and B40_4^0 = -1.3×\times 10−6^{-6} K. D is thus smaller by 8% and E larger by 7% than for S=10S = 10. The anisotropy barrier for S=9S = 9 is estimated as 22 K,which is 25% smaller than that for S=10S = 10 (29 K). These data also help assign the spin exchange constants(J's) and thus provide a basis for improved electronic structure calculations of Fe8_8Br8_8.Comment: 7 pages, Figs included in text, submitted to PR

    Quantization and Fractional Quantization of Currents in Periodically Driven Stochastic Systems I: Average Currents

    Full text link
    This article studies Markovian stochastic motion of a particle on a graph with finite number of nodes and periodically time-dependent transition rates that satisfy the detailed balance condition at any time. We show that under general conditions, the currents in the system on average become quantized or fractionally quantized for adiabatic driving at sufficiently low temperature. We develop the quantitative theory of this quantization and interpret it in terms of topological invariants. By implementing the celebrated Kirchhoff theorem we derive a general and explicit formula for the average generated current that plays a role of an efficient tool for treating the current quantization effects.Comment: 22 pages, 7 figure
    • …
    corecore