5,030 research outputs found

    Effects of the liquid-gas phase transition and cluster formation on the symmetry energy

    Full text link
    Various definitions of the symmetry energy are introduced for nuclei, dilute nuclear matter below saturation density and stellar matter, which is found in compact stars or core-collapse supernovae. The resulting differences are exemplified by calculations in a theoretical approach based on a generalized relativistic density functional for dense matter. It contains nucleonic clusters as explicit degrees of freedom with medium dependent properties that are derived for light clusters from a quantum statistical approach. With such a model the dissolution of clusters at high densities can be described. The effects of the liquid-gas phase transition in nuclear matter and of cluster formation in stellar matter on the density dependence of the symmetry energy are studied for different temperatures. It is observed that correlations and the formation of inhomogeneous matter at low densities and temperatures causes an increase of the symmetry energy as compared to calculations assuming a uniform uncorrelated spatial distribution of constituent baryons and leptons.Comment: 20 pages, 19 figures, version accepted for publication in EPJA special volume on Nuclear Symmetry Energ

    The center-to-limb variation across the Fraunhofer lines of HD 189733; Sampling the stellar spectrum using a transiting planet

    Full text link
    The center-to-limb variation (CLV) describes the brightness of the stellar disk as a function of the limb angle. Across strong absorption lines, the CLV can vary quite significantly. We obtained a densely sampled time series of high-resolution transit spectra of the active planet host star HD 189733 with UVES. Using the passing planetary disk of the hot Jupiter HD 189733 b as a probe, we study the CLV in the wings of the Ca II H and K and Na I D1 and D2 Fraunhofer lines, which are not strongly affected by activity-induced variability. In agreement with model predictions, our analysis shows that the wings of the studied Fraunhofer lines are limb brightened with respect to the (quasi-)continuum. The strength of the CLV-induced effect can be on the same order as signals found for hot Jupiter atmospheres. Therefore, a careful treatment of the wavelength dependence of the stellar CLV in strong absorption lines is highly relevant in the interpretation of planetary transit spectroscopy.Comment: Accepted in A&

    A planetary eclipse map of CoRoT-2a. Comprehensive lightcurve modeling combining rotational-modulation and transits

    Full text link
    We analyze the surface structure of the planet host star CoRoT-2a using a consistent model for both the `global' (i.e., rotationally modulated) lightcurve and the transit lightcurves, using data provided by the CoRoT mission. Selecting a time interval covering two stellar rotations and six transits of the planetary companion CoRoT-2b, we adopt a `strip' model of the surface to reproduce the photometric modulation inside and outside the transits simultaneously. Our reconstructions show that it is possible to achieve appropriate fits for the entire sub-interval using a low-resolution surface model with 36 strips. The surface reconstructions indicate that the brightness on the eclipsed section of the stellar surface is (6 +/- 1) % lower than the average brightness of the remaining surface. This result suggests a concentration of stellar activity in a band around the stellar equator similar to the behavior observed on the Sun.Comment: accepted by A&A on 12/09/200

    Planetary eclipse mapping of CoRoT-2a. Evolution, differential rotation, and spot migration

    Full text link
    The lightcurve of CoRoT-2 shows substantial rotational modulation and deformations of the planet's transit profiles caused by starspots. We consistently model the entire lightcurve, including both rotational modulation and transits, stretching over approximately 30 stellar rotations and 79 transits. The spot distribution and its evolution on the noneclipsed and eclipsed surface sections are presented and analyzed, making use of the high resolution achievable under the transit path. We measure the average surface brightness on the eclipsed section to be (5\pm1) % lower than on the noneclipsed section. Adopting a solar spot contrast, the spot coverage on the entire surface reaches up to 19 % and a maximum of almost 40 % on the eclipsed section. Features under the transit path, i.e. close to the equator, rotate with a period close to 4.55 days. Significantly higher rotation periods are found for features on the noneclipsed section indicating a differential rotation of ΔΩ>0.1\Delta \Omega > 0.1. Spotted and unspotted regions in both surface sections concentrate on preferred longitudes separated by roughly 180 deg.Comment: Paper accepted by A&A 17/02/2010. For a better resolution paper please visit my homepage: http://www.hs.uni-hamburg.de/EN/Ins/Per/Huber/index.htm

    Cluster virial expansion for nuclear matter within a quasiparticle statistical approach

    Full text link
    Correlations in interacting many-particle systems can lead to the formation of clusters, in particular bound states and resonances. Systematic quantum statistical approaches allow to combine the nuclear statistical equilibrium description (law of mass action) with mean-field concepts. A chemical picture, which treats the clusters as distinct entities, serves as an intuitive concept to treat the low-density limit. Within a generalized Beth-Uhlenbeck approach, the quasiparticle virial expansion is extended to include arbitrary clusters, where special attention must be paid to avoid inconsistencies such as double counting. Correlations are suppressed with increasing density due to Pauli blocking. The contribution of the continuum to the virial coefficients can be reduced by considering clusters explicitly and introducing quasiparticle energies. The cluster-virial expansion for nuclear matter joins known benchmarks at low densities with those near saturation density.Comment: 18 pages, 6 figures, 2 table

    Asymmetry Effects on Nuclear Fragmentation

    Get PDF
    We show the possibility of extracting important information on the symmetry term of the Equation of State (EOSEOS) directly from multifragmentation reactions using stable isotopes with different charge asymmetries. We study n-rich and n-poor Sn+SnSn + Sn collisions at 50AMeV50AMeV using a new stochastic transport approach with all isospin effects suitably accounted for. For central collisions a chemical component in the spinodal instabilities is clearly seen. This effect is reduced in the neck fragmentation observed for semiperipheral collisions, pointing to a different nature of the instability. In spite of the low asymmetry tested with stable isotopes the results are showing an interesting and promising dependence on the stiffness of the symmetry term, with an indication towards an increase of the repulsion above normal density.Comment: 8 pages (Latex), 7 Postscript figures, CRIS2000 Conference, Acicastello, Italy, May 22-26, (2000), Nucl. Phys. A (in press
    • …
    corecore