18 research outputs found

    Effect of target surface on the elastic properties of fast fullerenes

    No full text

    Control of Diffuse Vacuum Arc Using Axial Magnetic Fields in Commercial High Voltage Switchgear

    Get PDF
    During the development of a commercial vacuum interrupter for application in HV (high voltage) switchgear at a rated voltage of 145kV, we investigated the behavior of vacuum arcs controlled by axial magnetic fields (AMF). AMF arc control is already extensively used in medium voltage (1-52kV) applications, the key difference is the 2-3 times larger contact gap and the corresponding reduction of the AMF strength for HV applications. We conducted several stress tests with short circuit currents up to 40kA, thus not only testing the interrupting capability, but also the electrical endurance of such a contact system. We also investigated the dielectric behavior of the vacuum interrupter by testing the capacitive switching duty. Overall, the contacts were used in about 40 operations at high currents. Despite this large number of operations, they showed a minimal amount of contact erosion and damage and demonstrated behavior very similar to the extensive experience with MV vacuum interrupters. In line with simulation results, we conclude that even at high contact gaps and currents, a diffuse vacuum arc was maintained which distributed the arc energy evenly over the contacts

    Experimental progress in positronium laser physics

    Get PDF

    Rumpling of LiF(001) surface from fast atom diffraction

    Get PDF
    Quantum diffraction of fast atoms scattered from the topmost layer of surfaces under grazing angles of incidence can be employed for the analysis of detailed structural properties of insulator surfaces. From comparison of measured and calculated diffraction patterns we deduce the rumpling of the topmost surface layer of LiF(001) (i.e., an inward shift of Li(+) ions with respect to F(-) ions). The effect of thermal vibrations on the measurement of rumpling is accounted for by ab initio calculations of the mean-square vibrational amplitudes of surface ions. At room temperature this leads to a reduction of the apparent rumpling by 0.008 angstrom. We then obtain a rumpling of ( 0.05 +/- 0.04) angstrom, which improves its accuracy achieved in previous work
    corecore