291 research outputs found

    Single Nucleotide Polymorphisms in TLR9 Are Highly Associated with Susceptibility to Bacterial Meningitis in Children

    Get PDF
    Background. Bacterial meningitis (BM) is a severe infection mainly caused by Streptococcus pneumoniae and Neisseria meningitidis (NM). However, genetically determined susceptibility to develop severe infections by these microorganisms is variable between individuals. Toll-like receptor 9 (TLR9) recognizes bacterial DNA leading to intracellular inflammatory signaling. Single nucleotide polymorphisms (SNPs) within the TLR9 gene are associated with susceptibility to several diseases, no such association with meningitis has been described. Methods. We studied the role of TLR9 SNPs in host defense against BM. Two TLR9 SNPs and 4 TLR9 haplotypes were determined in 472 survivors of BM and compared to 392 healthy controls. Results. Carriage of the TLR912848-A mutant was significantly decreased in meningococcal meningitis (MM) patients compared with controls (p: .0098, odds ratio [OR]: .6, 95% confidence interval [CI]: .4-.9). TLR9 haplotype I was associated with an increased susceptibility to MM (p: .0237, OR 1.3, 95% CI: 1.0-1.5). In silico analysis shows a very strong immunoinhibitory potential for DNA of NM upon recognition by TLR9 (CpG index of -106.8). Conclusions. We report an association of TLR9 SNPs with susceptibility to BM, specifically MM indicating a protective effect for the TLR912848-A allele. We hypothesize that the TLR912848-A mutant results in an upregulation of TLR9 induced immune response compensating the strong inhibitory potential of NM CpG DNA. BACKGROUN

    Phase-transformation and precipitation kinetics in vanadium micro-alloyed steels by in-situ, simultaneous neutron diffraction and SANS

    Get PDF
    In-situ Neutron Diffraction and Small-Angle Neutron Scattering (SANS) are employed for the first time simultaneously in order to reveal the interaction between the austenite to ferrite phase transformation and the precipitation kinetics during isothermal annealing at 650 and at 700 °C in three steels with different vanadium (V) and carbon (C) concentrations. Austenite-to-ferrite phase transformation is observed in all three steels at both temperatures. The phase transformation is completed during a 10 h annealing treatment in all cases. The phase transformation is faster at 650 than at 700 °C for all alloys. Additions of vanadium and carbon to the steel composition cause a retardation of the phase transformation. The effect of each element is explained through its contribution to the Gibbs free energy dissipation. The austenite-to-ferrite phase transformation is found to initiate the vanadium carbide precipitation. Larger and fewer precipitates are detected at 700 than at 650 °C in all three steels, and a larger number density of precipitates is detected in the steel with higher concentrations of vanadium and carbon. After 10 h of annealing, the precipitated phase does not reach the equilibrium fraction as calculated by ThermoCalc. The external magnetic field applied during the experiments, necessary for the SANS measurements, causes a delay in the onset and time evolution of the austenite-to-ferrite phase transformation and consequently on the precipitation kinetics
    • …
    corecore