1,972 research outputs found

    A Simple and Highly Structured Procaine Hydrochloride as Fluorescent Quenching Chemosensor for Trace Determination of Mercury Species in Water

    Get PDF
    An ultrasensitive, simple and highly selective spectrofluorometric strategy for quantifying traces of mercury(II) in environmental water has been established using the fluorescent probe procaine hydrochloride (PQ+.Cl−). The procedure was based upon the formation of the ternary ion associate complex [(PQ+)2.(HgI4)2−] between PQ+.Cl− and mercury(II) in iodide media at pH 9.0–10.0 with its subsequent extraction onto dichloromethane accompanied by a change in fluorescence intensity at λex/em = 268/333 nm. The developed strategy exhibited a linear range of 1–114 μg L−1 with lower limit of detection (LOD) and quantification (LOQ) of mercury(II) 1.3 and 3.98 nM, respectively. Intra and inter-day laboratory accuracy and precision for trace analysis of mercury(II) in water were performed. Complexed mercury(II) in environmental water, chemical speciation and successful literature comparison was performed. The proposed system offered excellent selectivity towards mercury(II) ions examined in the presence of competent ions in excess, relevant to real water samples. The method was applied for analysis of mercury(II) in tap water samples. Statistical comparison (Student’s t and F tests) of the proposed method with the reference ICP-OES method revealed no significant differences in the accuracy and precision

    Brugada syndrome unmasked by fever: a comprehensive review of literature

    Get PDF
    Background: The Brugada pattern is identified on the EKG by a coved ST-segment elevation accompanied by a negative T wave in the early precordial leads in the absence of a cardiac structural abnormality. Brugada pattern and Brugada syndrome should be differentiated, as the latter is associated with an increased risk of sudden cardiac death. Methods: The literature was searched using multiple databases to identify all the articles on Brugada pattern. Data were screened and analyzed by independent authors. Results: Sixty articles, comprising 71 patients, were included in the study. The mean age of patients was 42.6 years, with a higher prevalence of Brugada pattern in men (83%) than women (17%). The most frequent findings associated with Brugada pattern was fever (83%). Other less common presentations included cough (21%), sore throat (10%), syncope (18%), abdominal pain (8%), and chest pain (7%). Comorbidities included pneumonia (30%), upper respiratory tract infections (14%) and smoking (14%). Among treatment modalities, 39% of patients had ICD placement performed, 44% received antibiotics, while 14% had supportive care. Adenosine was given to 3% of patients, while other antiarrhythmics like milrinone, amiodarone, sotalol, procainamide, flecainide, and nitroglycerin were given to 1% of patients. Most patients with Brugada syndrome had a satisfactory outcome, with only 4% mortality rate(WHAT ABOUT THE OTHER 11%?). Out of the 71 patients, 3% had persistent Brugada patterns, while 86% of patients recovered completely. There was no significant effect of ICD on mortality or Brugada pattern resolution (p 0.37). Conclusion: Our study shows that fever is the main reason for unmasking the Brugada pattern in patients with this channelopath

    Chromatographic Separation, Total Determination and Chemical Speciation of Mercury in Environmental Water Samples Using 4-(2-Thiazolylazo) Resorcinol-Based Polyurethane Foam Sorbent-Packed Column

    Get PDF
    A simple method has been developed for quantitative retention of traces of mercury(II) ions from aqueous media using polyurethane foams (PUFs) loaded with 4-(2-thiazolylazo) resorcinol (TAR). The kinetics and thermodynamics of the sorption of mercury(II) ions onto PUFs were studied. The sorption of mercury(II) ions onto PUF follows a first-order rate equation with k = 0.176 ± 0.010 min−1. The negative values of ΔH and ΔS may be interpreted as the exothermic chemisorption process and indicative of a faster chemisorption onto the active sites of the sorbent. The sorption data followed Langmuir, Freundlich and Dubinin-Radushkevich (D–R) isotherm models. The D-R parameters β, KDR and E were 0.329 mol2 kJ−2, 0.001 μmol g−1 and 1.23 ± 0.07 kJ/mol for the TAR-loaded PUFs, respectively. An acceptable retention and recovery (99.6 ± 1.1%) of mercury(II) ions in water at ≤10 ppb by the TAR-treated PUFs packed columns were achieved. A retention mechanism, involving absorption related to “solvent extraction” and an “added component” for surface adsorption, was suggested for the retention of mercury(II) ions by the used solid phase extractor. The performance of TAR-immobilized PUFs packed column in terms of the number (N), the height equivalent to a theoretical plate (HETP), the breakthrough and critical capacities of mercury(II) ion uptake by the sorbent packed column were found to be 50.0 ± 1.0, 1.01 ± 0.02 mm, 8.75 and 13.75 mg/g, respectively, at 5 mL/min flow rate

    Effect of Micro- to Nanosize Inclusions upon the Thermal Conductivity of Powdered Composites with High and Low Interface Resistance

    Get PDF
    Materials for thermal management application require better control over the thermophysical properties, which has largely been achieved by fabricating powdered composite. There are, however, several factors like filler volume fraction, shape morphology, inclusion size, and interfacial thermal resistance that limit the effective properties of the medium. This paper presents a methodology to estimate the effective thermal conductivity of powdered composites where the filler material is more conductive than the matrix. Only a few theoretical models, such as Hasselman and Johnson (HJ) model, include the effect of interfacial resistance in their formulation. Nevertheless, HJ model does not specify the nature of the interfacial thermal resistance. Although Sevostianov and Kachanov (SK) method takes care of interface thickness, they, on the other hand, have not taken into account the interfacial resistance due to atomic imperfections. In the present work, HJ model has been modified using SK method and the results were compared with experimental ones from the literature. It has been found that the effect of interfacial resistance is significant in highly resistive medium at microscale compared to nanoscale, such as Cu/diamond system, while, in a highly conductive medium, like bakelite/graphite system, the effect of shape factor is more significant than interfacial thermal resistance

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore