3,003 research outputs found

    Ion clustering in aqueous salt solutions near the liquid/vapor interface

    Get PDF
    Molecular dynamics simulations of aqueous NaCl, KCl, NaI, and KI solutions are used to study the effects of salts on the properties of the liquid/vapor interface. The simulations use the models which include both charge transfer and polarization effects. Pairing and the formation of larger ion clusters occurs both in the bulk and surface region, with a decreased tendency to form larger clusters near the interface. An analysis of the roughness of the surface reveals that the chloride salts, which have less tendency to be near the surface, have a roughness that is less than pure water, while the iodide salts, which have a greater surface affinity, have a larger roughness. This suggests that ions away from the surface and ions near the surface affect the interface in opposite ways.Comment: 10 pages, 5 figure

    Wildlife Habitat Management on College and University Campuses

    Get PDF
    With the increasing involvement of higher education institutions in sustainability movements, it remains unclear to what extent college and university campuses address wildlife habitat. Many campuses encompass significant areas of green space with potential to support diverse wildlife taxa. However, sustainability rating systems generally emphasize efforts like recycling and energy conservation over green landscaping and grounds maintenance. We sought to examine the types of wildlife habitat projects occurring at schools across the United States and whether or not factors like school type (public or private), size (number of students), urban vs. rural setting, and funding played roles in the implementation of such initiatives. Using case studies compiled by the National Wildlife Federation’s Campus Ecology program, we documented wildlife habitat-related projects at 60 campuses. Ten management actions derived from nationwide guidelines were used to describe the projects carried out by these institutions, and we recorded data about cost, funding, and outreach and education methods. We explored potential relationships among management actions and with school characteristics. We extracted themes in project types, along with challenges and responses to those challenges. Native plant species selection and sustainable lawn maintenance and landscaping were the most common management actions among the 60 campuses. According to the case studies we examined, we found that factors like school type, size, and location did not affect the engagement of a campus in wildlife habitat initiatives, nor did they influence the project expenditures or funding received by a campus. Our results suggest that many wildlife habitat initiatives are feasible for higher education institutions and may be successfully implemented at relatively low costs through simple, but deliberate management actions

    Exploring the Ecology of Establishing Oak Trees in Urban Settings of the Northeast

    Get PDF
    Urban forests notoriously lack diversity in the biological communities that inhabit them, from the age and species composition of street trees to wildlife populations. In reaction to invasions of nonnative insects and diseases as well as predicted response to climate change, an emerging number of community foresters and tree wardens are expanding their urban tree planting practices to include a broader assemblage of tree species. These include oaks, among other species able to tolerate and adapt to urban conditions. Oaks are potentially favorable in regions like the northeastern U.S., where they grow extensively in rural forests and demonstrate potential resistance to specific urban pests that have caused challenges for other historically popular and extensively planted street trees. Additionally, they are known to feature a number of wildlife benefits, and their ranges in the Northeast are predicted to expand under many future climate change forecast models. We examine the role of oaks in the urban environment through the lens of the urban forest diversity deficit, reviewing topics that include diversity recommendations, threats by nonnative insects and diseases, and the human-wildlife interface. The goal of this work is to encourage careful consideration of where and when to plant oak trees to help professionals address issues of uniformity, while achieving benefits for urban forest ecosystems and residents

    Phase change in subducted lithosphere, impulse, and quantizing Earth surface deformations

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Solid Earth 6 (2015): 1075-1085, doi:10.5194/se-6-1075-2015.The new paradigm of plate tectonics began in 1960 with Harry H. Hess's 1960 realization that new ocean floor was being created today and is not everywhere of Precambrian age as previously thought. In the following decades an unprecedented coming together of bathymetric, topographic, magnetic, gravity, seismicity, seismic profiling data occurred, all supporting and building upon the concept of plate tectonics. Most investigators accepted the premise that there was no net torque amongst the plates. Bowin (2010) demonstrated that plates accelerated and decelerated at rates 10−8 times smaller than plate velocities, and that globally angular momentum is conserved by plate tectonic motions, but few appeared to note its existence. Here we first summarize how we separate where different mass sources may lie within the Earth and how we can estimate their mass. The Earth's greatest mass anomalies arise from topography of the boundary between the metallic nickel–iron core and the silicate mantle that dominate the Earth's spherical harmonic degree 2 and 3 potential field coefficients, and overwhelm all other internal mass anomalies. The mass anomalies due to phase changes in olivine and pyroxene in subducted lithosphere are hidden within the spherical harmonic degree 4–10 packet, and are an order of magnitude smaller than those from the core–mantle boundary. Then we explore the geometry of the Emperor and Hawaiian seamount chains and the 60° bend between them that aids in documenting the slow acceleration during both the Pacific Plate's northward motion that formed the Emperor seamount chain and its westward motion that formed the Hawaiian seamount chain, but it decelerated at the time of the bend (46 Myr). Although the 60° change in direction of the Pacific Plate at of the bend, there appears to have been nary a pause in a passive spreading history for the North Atlantic Plate, for example. This, too, supports phase change being the single driver for plate tectonics and conservation of angular momentum. Since mountain building we now know results from changes in momentum, we have calculated an experimental deformation index value (1–1000) based on a world topographic grid at 5 arcmin spacing and displayed those results for viewing

    Kinetic Characterization and X-ray Structure of a Mutant of Haloalkane Dehalogenase with Higher Catalytic Activity and Modified Substrate Range

    Get PDF
    Conversion of halogenated aliphatics by haloalkane dehalogenase proceeds via the formation of a covalent alkyl-enzyme intermediate which is subsequently hydrolyzed by water. In the wild type enzyme, the slowest step for both 1,2-dichloroethane and 1,2-dibromoethane conversion is a unimolecular enzyme isomerization preceding rapid halide dissociation. Phenylalanine 172 is located in a helix-loop-helix structure that covers the active site cavity of the enzyme, interacts with the Clβ of 1,2-dichloroethane during catalysis, and could be involved in stabilization of this helix-loop-helix region of the cap domain of the enzyme. To obtain more information about the role of this residue in dehalogenase function, we performed a mutational analysis of position 172 and studied the kinetics and X-ray structure of the Phe172Trp enzyme. The Phe172Trp mutant had a 10-fold higher kcat/Km for 1-chlorohexane and a 2-fold higher kcat for 1,2-dibromoethane than the wild-type enzyme. The X-ray structure of the Phe172Trp enzyme showed a local conformational change in the helix-loop-helix region that covers the active site. This could explain the elevated activity for 1-chlorohexane of the Phe172Trp enzyme, since it allows this large substrate to bind more easily in the active site cavity. Pre-steady-state kinetic analysis showed that the increase in kcat found for 1,2-dibromoethane conversion could be attributed to an increase in the rate of an enzyme isomerization step that preceeds halide release. The observed conformational difference between the helix-loop-helix structures of the wild-type enzyme and the faster mutant suggests that the isomerization required for halide release could be a conformational change that takes place in this region of the cap domain of the dehalogenase. It is proposed that Phe172 is involved in stabilization of the helix-loop-helix structure that covers the active site of the enzyme and creates a rigid hydrophobic cavity for small apolar halogenated alkanes.

    Eye movements of learning disabled children based on norm scored tests

    Get PDF
    Various tests have been devised to assess eye movement abilities. Although they have been normed to a general population, comparisons between those with learning/reading difficulties and the normal population has not been thoroughly investigated. This study attempts to evaluate the eye movement abilities of a reading delayed population. Seventy-four reading delayed subjects were given three different eye movement tests as an adjunct to the standard vision screening procedure. The Groffman Visual Tracing Test, the Pierce Saccade Test and the Stern Saccadic Fixation Test were administered to the subjects at the end of a primary screening. Eye movements were analyzed based on the subject\u27s actual age scores and expected age scores . The subjects were found to have eye movement deficiencies significant to the 0.005 level. The findings suggest that eye movements measured on the Groffman, Stern, and Pierce may provide another screening method for detecting individuals with reading deficiencies

    Ultra-low energy scattering of a He atom off a He dimer

    Get PDF
    We present a new, mathematically rigorous, method suitable for bound state and scattering processes calculations for various three atomic or molecular systems where the underlying forces are of a hard-core nature. We employed this method to calculate the binding energies and the ultra-low energy scattering phase shifts below as well as above the break-up threshold for the three He-atom system. The method is proved to be highly successful and suitable for solving the three-body bound state and scattering problem in configuration space and thus it paves the way to study various three-atomic systems, and to calculate important quantities such as the cross-sections, recombination rates etc.Comment: LaTeX, RevTeX and amssymb styles, 7 pages (25 Kb), 3 table
    corecore