43 research outputs found

    Crystallographic, Optical, and Electronic Properties of the Cs2AgBi1–xInxBr6 Double Perovskite: Understanding the Fundamental Photovoltaic Efficiency Challenges

    Get PDF
    We present a crystallographic and optoelectronic study of the double perovskite Cs2AgBi1–xInxBr6. From structural characterization we determine that the indium cation shrinks the lattice and shifts the cubic-to-tetragonal phase transition point to lower temperatures. The absorption onset is shifted to shorter wavelengths upon increasing the indium content, leading to wider band gaps, which we rationalize through first-principles band structure calculations. Despite the unfavorable band gap shift, we observe an enhancement in the steady-state photoluminescence intensity, and n-i-p photovoltaic devices present short-circuit current greater than that of neat Cs2AgBiBr6 devices. In order to evaluate the prospects of this material as a solar absorber, we combine accurate absorption measurements with thermodynamic modeling and identify the fundamental limitations of this system. Provided radiative efficiency can be increased and the choice of charge extraction layers are specifically improved, this material could prove to be a useful wide band gap solar absorber

    Perovskite-perovskite tandem photovoltaics with optimized bandgaps

    Full text link
    We demonstrate four and two-terminal perovskite-perovskite tandem solar cells with ideally matched bandgaps. We develop an infrared absorbing 1.2eV bandgap perovskite, FA0.75Cs0.25Sn0.5Pb0.5I3FA_{0.75}Cs_{0.25}Sn_{0.5}Pb_{0.5}I_3, that can deliver 14.8 % efficiency. By combining this material with a wider bandgap FA0.83Cs0.17Pb(I0.5Br0.5)3FA_{0.83}Cs_{0.17}Pb(I_{0.5}Br_{0.5})_3 material, we reach monolithic two terminal tandem efficiencies of 17.0 % with over 1.65 volts open-circuit voltage. We also make mechanically stacked four terminal tandem cells and obtain 20.3 % efficiency. Crucially, we find that our infrared absorbing perovskite cells exhibit excellent thermal and atmospheric stability, unprecedented for Sn based perovskites. This device architecture and materials set will enable 'all perovskite' thin film solar cells to reach the highest efficiencies in the long term at the lowest costs

    Progress on lead-free metal halide perovskites for photovoltaic applications: a review

    Get PDF
    ABSTRACT: Metal halide perovskites have revolutionized the field of solution-processable photovoltaics. Within just a few years, the power conversion efficiencies of perovskite-based solar cells have been improved significantly to over 20%, which makes them now already comparably efficient to silicon-based photovoltaics. This breakthrough in solution-based photovoltaics, however, has the drawback that these high efficiencies can only be obtained with lead-based perovskites and this will arguably be a substantial hurdle for various applications of perovskite-based photovoltaics and their acceptance in society, even though the amounts of lead in the solar cells are low. This fact opened up a new research field on lead-free metal halide perovskites, which is currently remarkably vivid. We took this as incentive to review this emerging research field and discuss possible alternative elements to replace lead in metal halide perovskites and the properties of the corresponding perovskite materials based on recent theoretical and experimental studies. Up to now, tin-based perovskites turned out to be most promising in terms of power conversion efficiency; however, also the toxicity of these tin-based perovskites is argued. In the focus of the research community are other elements as well including germanium, copper, antimony, or bismuth, and the corresponding perovskite compounds are already showing promising properties. GRAPHICAL ABSTRACT: [Image: see text

    HCMR aids bid for recovery of crashed Chinook helicopter

    No full text

    Impurity-related vibrational modes in a pentacene crystal

    No full text
    The presence of impurities in the molecular crystals of organic semiconductors is a key limiting factor for the performance of related electronic devices. For this reason, the atomic-scale details of impurity incorporation are important elements for modeling and optimization of organic electronic systems. In this article, we use first-principles density-functional theory calculations to describe the vibrational spectrum of typical impurity culprits in the prototype organic semiconductor pentacene. First, we validate the computational approach by comparing results on vibrational modes of impurity-free pentacene with available theoretical and experimental data. We then analyze the effect of oxygen, water, and hydrogen impurities on the modes of pentacene crystals. The results identify distinct impurity-related features which can help understand the evolution of impurities in pentacene samples

    Photo-onycholysis caused by olanzapine and aripiprazole

    No full text
    Photo-onycholysis associated with drugs is an uncommon disorder. We report the case of a woman who developed photo-onycholysis on multiple nails after uptake of olanzapine. Substitution of olanzapine with aripiprazole further exacerbated the problem. The possible mechanisms of photo-onycholysis development by modern atypical antipsychotics, modulating dopamine receptors, are discussed. © 2008 Lippincott Williams & Wilkins, Inc
    corecore