129 research outputs found

    Microphase Separation and modulated phases in a Coulomb frustrated Ising ferromagnet

    Full text link
    We study a 3-dimensional Ising model in which the tendency to order due to short-range ferromagnetic interactions is frustrated by competing long-range (Coulombic) interactions. Complete ferromagnetic ordering is impossible for any nonzero value of the frustration parameter, but the system displays a variety of phases characterized by periodically modulated structures. We have performed extensive Monte-Carlo simulations which provide strong evidence that the microphase separation transition between paramagnetic and modulated phases is a fluctuation-induced first-order transition. Additional transitions to various commensurate phases may also occur when further lowering the temperature.Comment: 6 pages, 4 figures, accepted in Europhys. Letter

    The viscous slowing down of supercooled liquids as a temperature-controlled superArrhenius activated process: a description in terms of frustration-limited domains

    Full text link
    We propose that the salient feature to be explained about the glass transition of supercooled liquids is the temperature-controlled superArrhenius activated nature of the viscous slowing down, more strikingly seen in weakly-bonded, fragile systems. In the light of this observation, the relevance of simple models of spherically interacting particles and that of models based on free-volume congested dynamics are questioned. Finally, we discuss how the main aspects of the phenomenology of supercooled liquids, including the crossover from Arrhenius to superArrhenius activated behavior and the heterogeneous character of the α\alpha relaxation, can be described by an approach based on frustration-limited domains.Comment: 13 pages, 4 figures, accepted in J. Phys.: Condensed Matter, proceedings of the Trieste workshop on "Unifying Concepts in Glass Physics

    BIOMECHANICS OF SURFING: DEVELOPMENT AND VALIDATION OF AN INSTRUMENTED SURFBOARD TO MEASURE SURFBOARD KINETICS

    Get PDF
    The purpose of this study was to investigate the different relations between the actions of a surfer and the kinematic behaviour of his surfboard. An instrumented surfboard has been designed with a force platform synchronized with an inertial measurement unit and acquisition system. An experimental campaign has been carried out in situ, where different waves have been surfed to validate the device. Results revealed that measured efforts of the surfer and kinematics of his surfboard are consistent regarding the expected behaviour. Instrumented surfboards will help coaches by giving them a new performance analysis tool. It will also provide an experimental database for the development of numerical models about interactions Surfer/Surfboard/Wave

    Out-of-equilibrium dynamics of two interacting optically-trapped particles

    Full text link
    We present a theoretical analysis of a non-equilibrium dynamics in a model system consisting of two particles which move randomly on a plane. The two particles interact via a harmonic potential, experience their own (independent from each other) noises characterized by two different temperatures T1T_1 and T2T_2, and each particle is being held by its own optical tweezer. Such a system with two particle coupled by hydrodynamic interactions was previously realised experimentally in B\'erut et al. [EPL {\bf 107}, 60004 (2014)], and the difference between two temperatures has been achieved by exerting an additional noise on either of the tweezers. Framing the dynamics in terms of two coupled over-damped Langevin equations, we show that the system reaches a non-equilibrium steady-state with non-zero (for T1T2T_1 \neq T_2) probability currents that possess non-zero curls. As a consequence, in this system the particles are continuously spinning around their centers of mass in a completely synchronised way - the curls of currents at the instantaneous positions of two particles have the same magnitude and sign. Moreover, we demonstrate that the components of currents of two particles are strongly correlated and undergo a rotational motion along closed elliptic orbits.Comment: 17 pages, 4 figure

    Response properties in a model for granular matter

    Full text link
    We investigate the response properties of granular media in the framework of the so-called {\em Random Tetris Model}. We monitor, for different driving procedures, several quantities: the evolution of the density and of the density profiles, the ageing properties through the two-times correlation functions and the two-times mean-square distance between the potential energies, the response function defined in terms of the difference in the potential energies of two replica driven in two slightly different ways. We focus in particular on the role played by the spatial inhomogeneities (structures) spontaneously emerging during the compaction process, the history of the sample and the driving procedure. It turns out that none of these ingredients can be neglected for the correct interpretation of the experimental or numerical data. We discuss the problem of the optimization of the compaction process and we comment on the validity of our results for the description of granular materials in a thermodynamic framework.Comment: 22 pages, 35 eps files (21 figures

    Random sequential adsorption on a dashed line

    Full text link
    We study analytically and numerically a model of random sequential adsorption (RSA) of segments on a line, subject to some constraints suggested by two kinds of physical situations: - deposition of dimers on a lattice where the sites have a spatial extension; - deposition of extended particles which must overlap one (or several) adsorbing sites on the substrate. Both systems involve discrete and continuous degrees of freedom, and, in one dimension, are equivalent to our model, which depends on one length parameter. When this parameter is varied, the model interpolates between a variety of known situations : monomers on a lattice, "car-parking" problem, dimers on a lattice. An analysis of the long-time behaviour of the coverage as a function of the parameter exhibits an anomalous 1/t^2 approach to the jamming limit at the transition point between the fast exponential kinetics, characteristic of the lattice model, and the 1/t law of the continuous one.Comment: 14 pages (Latex) + 4 Postscript figure

    Locally Preferred Structure and Frustration in Glassforming Liquids: A Clue to Polyamorphism?

    Full text link
    We propose that the concept of liquids characterized by a given locally preferred structure (LPS) could help in understanding the observed phenomenon of polyamorphism. ``True polyamorphism'' would involve the competition between two (or more) distinct LPS, one favored at low pressure because of its low energy and one favored at high pressure because of its small specific volume, as in tetrahedrally coordinated systems. ``Apparent polyamorphism'' could be associated with the existence of a poorly crystallized defect-ordered phase with a large unit cell and small crystallites, which may be illustrated by the metastable glacial phase of the fragile glassformer triphenylphosphite; the apparent polyamorphism might result from structural frustration, i. e., a competition between the tendency to extend the LPS and a global constraint that prevents tiling of the whole space by the LPS.Comment: 11, 6 figures, Proceedings of the Conference "Horizons in Complex Systems", Messina; in honor of the 60th birthday of H.E. Stanle

    Kinetics and Jamming Coverage in a Random Sequential Adsorption of Polymer Chains

    Get PDF
    Using a highly efficient Monte Carlo algorithm, we are able to study the growth of coverage in a random sequential adsorption (RSA) of self-avoiding walk (SAW) chains for up to 10^{12} time steps on a square lattice. For the first time, the true jamming coverage (theta_J) is found to decay with the chain length (N) with a power-law theta_J propto N^{-0.1}. The growth of the coverage to its jamming limit can be described by a power-law, theta(t) approx theta_J -c/t^y with an effective exponent y which depends on the chain length, i.e., y = 0.50 for N=4 to y = 0.07 for N=30 with y -> 0 in the asymptotic limit N -> infinity.Comment: RevTeX, 5 pages inclduing figure
    corecore