103 research outputs found

    Setting-up a training programme for intraoperative molecular imaging and sentinel node mapping: how to teach? How to learn?

    Get PDF
    BackgroundThe current expansion of image-guided surgery is closely related to the role played by radio-guided surgery in supporting the sentinel node (SN) procedure during more than three decades. The so-called triple approach (lymphoscintigraphy, gamma probe detection and blue dye) was not only essential in the seminal validation of the SN procedure but also a first collective learning effort based on skill transfer and outcome-related evaluation which laid the fundaments to delineate the field of intraoperative molecular imaging (IMI) based on a similar multimodality approach and multidisciplinary practice.MethodsThese elements are also becoming valid in the current incorporation of SPECT/CT and PET/CT to existing and new protocols of IMI procedures and SN mapping concerning other clinical applications. On the other hand, there is a growing tendency to combine novel modern technologies in an allied role with gamma guidance in the operating room following the development of hybrid tracers and multimodal detection approaches. Against this background, learning initiatives are required for professionals working in this area.ResultsThis objective has led to a group of European practitioners with large experience in SN mapping and IMI applications to give shape to a programme made up out of specific learning modules aimed to be used as a conductive thread in peripherical or centralised training instances concerning the topic.ConclusionThe presented work, written as a tutorial review, is placed in an available prior-art context and is primarily aimed at medical and paramedical practitioners as well as at hardware and software developers.Radiolog

    The EANM clinical and technical guidelines for lymphoscintigraphy and sentinel node localization in gynaecological cancers

    Get PDF
    Abstract The accurate harvesting of a sentinel node in gynaecological cancer (i.e. vaginal, vulvar, cervical, endometrial or ovarian cancer) includes a sequence of procedures with components from different medical specialities (nuclear medicine, radiology, surgical oncology and pathology). These guidelines are divided into sectione entitled: Purpose, Background information and definitions, Clinical indications and contraindications for SLN detection, Procedures (in the nuclear medicine department, in the surgical suite, and for radiation dosimetry), and Issues requiring further clarification. The guidelines were prepared for nuclear medicine physicians. The intention is to offer assistance in optimizing the diagnostic information that can currently be obtained from sentinel lymph node procedures. If specific recommendations given cannot be based on evidence from original scientific studies, referral is made to "general consensus" and similar expressions. The recommendations are designed to assist in the practice of referral to, and the performance, interpretation and reporting of all steps of the sentinel node procedure in the hope of setting state-of-the-art standards for high-quality evaluation of possible metastatic spread to the lymphatic system in gynaecological cancer. The final result has been discussed by a group of distinguished experts from the EANM Oncology Committee and the European Society of Gynaecological Oncology (ESGO). The document has been endorsed by the SNMMI Board

    Association of MC1R Variants and host phenotypes with melanoma risk in CDKN2A mutation carriers: a GenoMEL study

    Get PDF
    <p><b>Background</b> Carrying the cyclin-dependent kinase inhibitor 2A (CDKN2A) germline mutations is associated with a high risk for melanoma. Penetrance of CDKN2A mutations is modified by pigmentation characteristics, nevus phenotypes, and some variants of the melanocortin-1 receptor gene (MC1R), which is known to have a role in the pigmentation process. However, investigation of the associations of both MC1R variants and host phenotypes with melanoma risk has been limited.</p> <p><b>Methods</b> We included 815 CDKN2A mutation carriers (473 affected, and 342 unaffected, with melanoma) from 186 families from 15 centers in Europe, North America, and Australia who participated in the Melanoma Genetics Consortium. In this family-based study, we assessed the associations of the four most frequent MC1R variants (V60L, V92M, R151C, and R160W) and the number of variants (1, ≥2 variants), alone or jointly with the host phenotypes (hair color, propensity to sunburn, and number of nevi), with melanoma risk in CDKN2A mutation carriers. These associations were estimated and tested using generalized estimating equations. All statistical tests were two-sided.</p> <p><b>Results</b> Carrying any one of the four most frequent MC1R variants (V60L, V92M, R151C, R160W) in CDKN2A mutation carriers was associated with a statistically significantly increased risk for melanoma across all continents (1.24 × 10−6 ≤ P ≤ .0007). A consistent pattern of increase in melanoma risk was also associated with increase in number of MC1R variants. The risk of melanoma associated with at least two MC1R variants was 2.6-fold higher than the risk associated with only one variant (odds ratio = 5.83 [95% confidence interval = 3.60 to 9.46] vs 2.25 [95% confidence interval = 1.44 to 3.52]; Ptrend = 1.86 × 10−8). The joint analysis of MC1R variants and host phenotypes showed statistically significant associations of melanoma risk, together with MC1R variants (.0001 ≤ P ≤ .04), hair color (.006 ≤ P ≤ .06), and number of nevi (6.9 × 10−6 ≤ P ≤ .02).</p> <p><b>Conclusion</b> Results show that MC1R variants, hair color, and number of nevi were jointly associated with melanoma risk in CDKN2A mutation carriers. This joint association may have important consequences for risk assessments in familial settings.</p&gt

    Completion Dissection or Observation for Sentinel-Node Metastasis in Melanoma.

    Get PDF
    Sentinel-lymph-node biopsy is associated with increased melanoma-specific survival (i.e., survival until death from melanoma) among patients with node-positive intermediate-thickness melanomas (1.2 to 3.5 mm). The value of completion lymph-node dissection for patients with sentinel-node metastases is not clear. In an international trial, we randomly assigned patients with sentinel-node metastases detected by means of standard pathological assessment or a multimarker molecular assay to immediate completion lymph-node dissection (dissection group) or nodal observation with ultrasonography (observation group). The primary end point was melanoma-specific survival. Secondary end points included disease-free survival and the cumulative rate of nonsentinel-node metastasis. Immediate completion lymph-node dissection was not associated with increased melanoma-specific survival among 1934 patients with data that could be evaluated in an intention-to-treat analysis or among 1755 patients in the per-protocol analysis. In the per-protocol analysis, the mean (±SE) 3-year rate of melanoma-specific survival was similar in the dissection group and the observation group (86±1.3% and 86±1.2%, respectively; P=0.42 by the log-rank test) at a median follow-up of 43 months. The rate of disease-free survival was slightly higher in the dissection group than in the observation group (68±1.7% and 63±1.7%, respectively; P=0.05 by the log-rank test) at 3 years, based on an increased rate of disease control in the regional nodes at 3 years (92±1.0% vs. 77±1.5%; P<0.001 by the log-rank test); these results must be interpreted with caution. Nonsentinel-node metastases, identified in 11.5% of the patients in the dissection group, were a strong, independent prognostic factor for recurrence (hazard ratio, 1.78; P=0.005). Lymphedema was observed in 24.1% of the patients in the dissection group and in 6.3% of those in the observation group. Immediate completion lymph-node dissection increased the rate of regional disease control and provided prognostic information but did not increase melanoma-specific survival among patients with melanoma and sentinel-node metastases. (Funded by the National Cancer Institute and others; MSLT-II ClinicalTrials.gov number, NCT00297895 .)
    corecore