420 research outputs found
Architectures for RF Frequency synthesizers
Frequency synthesizers are an essential building block of RF communication products. They can be found in traditional consumer products, in personal communication systems, and in optical communication equipment. Since frequency synthesizers are used in many different applications, different performance aspects may need to be considered in each case. The main body of the text describes a conceptual framework for analyzing the performance of PLL frequency synthesizers, and presents optimization procedures for the different performance aspects. The analysis of the PLL properties is performed with the use of the open-loop bandwidth and phase margin concepts, to enable the influence of higher-order poles to be taken into account from the beginning of the design process. The theoretical system analysis is complemented by descriptions of innovative system and building block architectures, by circuit implementations in bipolar and CMOS technologies, and by measurement results. Architectures for RF Frequency Synthesizers contains basic information for the beginner as well as in-depth knowledge for the experienced designer. It is widely illustrated with practical design examples used in industrial products.\ud
Written for:\ud
Electrical and electronic engineer
Fast initialization of a high-fidelity quantum register using optical superlattices
We propose a method for the fast generation of a quantum register of
addressable qubits consisting of ultracold atoms stored in an optical lattice.
Starting with a half filled lattice we remove every second lattice barrier by
adiabatically switching on a superlattice potential which leads to a long
wavelength lattice in the Mott insulator state with unit filling. The larger
periodicity of the resulting lattice could make individual addressing of the
atoms via an external laser feasible. We develop a Bose-Hubbard-like model for
describing the dynamics of cold atoms in a lattice when doubling the lattice
periodicity via the addition of a superlattice potential. The dynamics of the
transition from a half filled to a commensurately filled lattice is analyzed
numerically with the help of the Time Evolving Block Decimation algorithm and
analytically using the Kibble-Zurek theory. We show that the time scale for the
whole process, i.e. creating the half filled lattice and subsequent doubling of
the lattice periodicity, is significantly faster than adiabatic direct quantum
freezing of a superfluid into a Mott insulator for large lattice periods. Our
method therefore provides a high fidelity quantum register of addressable
qubits on a fast time scale.Comment: 22 pages, 9 figures, IOP style. Revised version to appear in NJ
Low-Jitter Clock Multiplication: a Comparioson between PLLs and DLLs
This paper shows that, for a given power budget, a practical phase-locked loop (PLL)-based clock multiplier generates less jitter than a delay-locked loop (DLL) equivalent. This is due to the fact that the delay cells in a PLL ring-oscillator can consume more power per cell than their counterparts in the DLL. We can show that this effect is stronger than the notorious jitter accumulation effect that occurs in the voltage-controlled oscillator (VCO) of a PLL. First, an analysis of the stochastic-output jitter of the architectures, due to the most important noise sources, is presented. Then, another important source of jitter in a DLL-based clock multiplier is treated, namely the stochastic mismatch in the delay cells which compose the DLL voltage-controlled delay line (VCDL). An analysis is presented that relates the stochastic spread of the delay of the cells to the output jitter of the clock multiplier. A circuit design technique, called impedance level scaling, is then presented which allows the designer to optimize the noise and mismatch behavior of a circuit, independently from other specifications such as speed and linearity. Applying this technique on a delay cell design yields a direct tradeoff between noise induced jitter and power usage, and between stochastic mismatch induced jitter and power usage
Ultra-large Rydberg dimers in optical lattices
We investigate the dynamics of Rydberg electrons excited from the ground
state of ultracold atoms trapped in an optical lattice. We first consider a
lattice comprising an array of double-well potentials, where each double well
is occupied by two ultracold atoms. We demonstrate the existence of molecular
states with equilibrium distances of the order of experimentally attainable
inter-well spacings and binding energies of the order of 10^3 GHz. We also
consider the situation whereby ground-state atoms trapped in an optical lattice
are collectively excited to Rydberg levels, such that the charge-density
distributions of neighbouring atoms overlap. We compute the hopping rate and
interaction matrix elements between highly-excited electrons separated by
distances comparable to typical lattice spacings. Such systems have tunable
interaction parameters and a temperature ~10^{-4} times smaller than the Fermi
temperature, making them potentially attractive for the study and simulation of
strongly correlated electronic systems.Comment: 10 pages, 6 figures, PRA format, version to be published in PR
ERK signaling pathway regulates sleep duration through activity-induced gene expression during wakefulness.
Wakefulness is accompanied by experience-dependent synaptic plasticity and an increase in activity-regulated gene transcription. Wake-induced genes are certainly markers of neuronal activity and may also directly regulate the duration of and need for sleep. We stimulated murine cortical cultures with the neuromodulatory signals that are known to control wakefulness in the brain and found that norepinephrine alone or a mixture of these neuromodulators induced activity-regulated gene transcription. Pharmacological inhibition of the various signaling pathways involved in the regulation of gene expression indicated that the extracellular signal-regulated kinase (ERK) pathway is the principal one mediating the effects of waking neuromodulators on gene expression. In mice, ERK phosphorylation in the cortex increased and decreased with wakefulness and sleep. Whole-body or cortical neuron-specific deletion of Erk1 or Erk2 significantly increased the duration of wakefulness in mice, and pharmacological inhibition of ERK phosphorylation decreased sleep duration and increased the duration of wakefulness bouts. Thus, this signaling pathway, which is highly conserved from Drosophila to mammals, is a key pathway that links waking experience-induced neuronal gene expression to sleep duration and quality
Quark Mass Matrices with Four and Five Texture Zeroes, and the CKM Matrix, in terms of Mass Eigenvalues
Using the triangular matrix techniques of Kuo et al and Chiu et al for the
four and five texture zero cases, with vanishing (11) elements for U and D
matrices, it is shown, from the general eigenvalue equations and hierarchy
conditions, that the quark mass matrices, and the CKM matrix can be expressed
(except for the phases) entirely in terms of quark masses. The matrix
structures are then quite simple and transparent. We confirm their results for
the five texture zero case but find, upon closer examination of all the CKM
elements which our results provide, that six of their nine patterns for the
four texture zero case are not compatible with experiments. In total, only one
five-texture zero and three four-texture zero patterns are allowed.Comment: 15 pages, 3 table
Development and validation of a postmortem radiological alteration index: the RA-Index
This study aimed to derive an index quantifying the state of alteration of cadavers by quantifying the presence of gas in the body using postmortem multidetector computed tomography (MDCT) imaging, and to validate the index by defining its sensitivity and specificity. The RA (radiological alteration)-index was derived from postmortem MDCT data from 118 nontraumatically deceased people. To validate the index, 100 additional scanned bodies (50 % traumatically deceased) were retrospectively examined by two independent observers. Presence of gas at 82 sites was assessed by a radiologist, whereas a forensic pathologist only investigated the seven sites used for the RA-index. The RA-index was highly correlated to the overall presence of gas in all 82 sites (R2 = 0.98 in the derivation set and 0.85 in the validation set). Semiquantitative evaluation of gas presence in each site showed moderate reliability (Cohen's kappa range, 0.41-0.78); nevertheless, the overall RA-index was very reliable (ICC2,1 = 0.95; 95 % CI 0.92-0.96). Examiner using the RA-index detected heart cavities full of gas with a sensitivity of 100 % (95 % CI 51.7-100) and a specificity of 98.8 % (92.6-99.9). We conclude that determining the presence of gas at seven sites is a valid means to measure the distribution of gas due to cadaveric alteration in the entire body. The RA-index is rapid, easy-to-use, and reliable for nonexperienced users, and it is a valid method to suspect the normal presence of gas from cadaveric alteration. MDCT can be used to screen for gas embolism and to give indications for gas composition analysis (gas chromatography
A 2.5-10-GHz clock multiplier unit with 0.22-ps RMS jitter in standard 0.18-μm CMOS
This paper demonstrates a low-jitter clock multiplier unit that generates a 10-GHz output clock from a 2.5-GHz reference clock. An integrated 10-GHz LC oscillator is locked to the input clock, using a simple and fast phase detector circuit that overcomes the speed limitation of a conventional tri-state phase frequency detector due to the lack of an internal feedback loop. A frequency detector guarantees PLL locking without degenerating jitter performance. The clock multiplier is implemented in a standard 0.18-μm CMOS process and achieves a jitter generation of 0.22 ps while consuming 100 mW power from a 1.8-V supply
- …