112 research outputs found

    Goal Directed Visual Search Based on Color Cues: Co-operative Effectes of Top-Down & Bottom-Up Visual Attention

    Get PDF
    Focus of Attention plays an important role in perception of the visual environment. Certain objects stand out in the scene irrespective of observers\u27 goals. This form of attention capture, in which stimulus feature saliency captures our attention, is of a bottom-up nature. Often prior knowledge about objects and scenes can influence our attention. This form of attention capture, which is influenced by higher level knowledge about the objects, is called top-down attention. Top-down attention acts as a feedback mechanism for the feed-forward bottom-up attention. Visual search is a result of a combined effort of the top-down (cognitive cue) system and bottom-up (low level feature saliency) system. In my thesis I investigate the process of goal directed visual search based on color cue, which is a process of searching for objects of a certain color. The computational model generates saliency maps that predict the locations of interest during a visual search. Comparison between the model-generated saliency maps and the results of psychophysical human eye -tracking experiments was conducted. The analysis provides a measure of how well the human eye movements correspond with the predicted locations of the saliency maps. Eye tracking equipment in the Visual Perceptual Laboratory in the Center for Imaging Science was used to conduct the experiments

    A new common functional coding variant at the DDC gene change renal enzyme activity and modify renal dopamine function.

    Get PDF
    The intra-renal dopamine (DA) system is highly expressed in the proximal tubule and contributes to Na+ and blood pressure homeostasis, as well as to the development of nephropathy. In the kidney, the enzyme DOPA Decarboxylase (DDC) originating from the circulation. We used a twin/family study design, followed by polymorphism association analysis at DDC locus to elucidate heritable influences on renal DA production. Dense single nucleotide polymorphism (SNP) genotyping across the DDC locus on chromosome 7p12 was analyzed by re-sequencing guided by trait-associated genetic markers to discover the responsible genetic variation. We also characterized kinetics of the expressed DDC mutant enzyme. Systematic polymorphism screening across the 15-Exon DDC locus revealed a single coding variant in Exon-14 that was associated with DA excretion and multiple other renal traits indicating pleiotropy. When expressed and characterized in eukaryotic cells, the 462Gln variant displayed lower Vmax (maximal rate of product formation by an enzyme) (21.3 versus 44.9 nmol/min/mg) and lower Km (substrate concentration at which half-maximal product formation is achieved by an enzyme.)(36.2 versus 46.8 μM) than the wild-type (Arg462) allele. The highly heritable DA excretion trait is substantially influenced by a previously uncharacterized common coding variant (Arg462Gln) at the DDC gene that affects multiple renal tubular and glomerular traits, and predicts accelerated functional decline in chronic kidney disease

    Naturally Occurring Genetic Variants in Human Chromogranin A (CHGA) Associated with Hypertension as well as Hypertensive Renal Disease

    Get PDF
    Chromogranin A (CHGA) plays a fundamental role in the biogenesis of catecholamine secretory granules. Changes in storage and release of CHGA in clinical and experimental hypertension prompted us to study whether genetic variation at the CHGA locus might contribute to alterations in autonomic function, and hence hypertension and its target organ consequences such as hypertensive renal disease (nephrosclerosis). Systematic polymorphism discovery across the human CHGA locus revealed both common and unusual variants in both the open reading frame and such regulatory regions as the proximal promoter and 3′-UTR. In chromaffin cell-transfected CHGA 3′-UTR and promoter/luciferase reporter plasmids, the functional consequences of the regulatory/non-coding allelic variants were documented. Variants in both the proximal promoter and the 3′-UTR displayed statistical associations with hypertension. Genetic variation in the proximal CHGA promoter predicted glomerular filtration rate in healthy twins. However, for hypertensive renal damage, both end-stage renal disease and rate of progression of earlier disease were best predicted by variants in the 3′-UTR. Finally, mechanistic studies were undertaken initiated by the clue that CHGA promoter variation predicted circulating endothelin-1. In cultured endothelial cells, CHGA triggered co-release of not only the vasoconstrictor and pro-fibrotic endothelin-1, but also the pro-coagulant von Willebrand Factor and the pro-angiogenic angiopoietin-2. These findings, coupled with stimulation of endothelin-1 release from glomerular capillary endothelial cells by CHGA, suggest a plausible mechanism whereby genetic variation at the CHGA locus eventuates in alterations in human renal function. These results document the consequences of genetic variation at the CHGA locus for cardiorenal disease and suggest mechanisms whereby such variation achieves functional effects

    Suicidal Ideation, Suicidal Plan and Suicidal Attempts Among Those with Major Depressive Disorder

    Get PDF
    Abstract Introduction: The aims of the study were to identify the prevalence and sociodemographic and clinical correlates of suicidal behaviours using data from a cross-sectional survey among those with major depressive disorder (MDD) in Singapore. Materials and Methods: The Singapore Mental Health Study (SMHS) was a cross-sectional epidemiological study that surveyed Singapore residents (Singapore citizens and permanent residents) aged 18 years and above. The assessment of mental disorders was established using version 3.0 of the Composite International Diagnostic Interview (CIDI 3.0). For the purposes of this study, suicidal behaviour was assessed by questions which were asked to respondents who answered positively to the screening questions in the CIDI 3.0 "Depression" module. Results: The prevalence of suicidal ideation, plan and attempt among those with lifetime MDD was 43.6%, 13.7% and 12.3%, respectively. We found that suicidal ideation, plan and attempt were signifi cantly associated with ethnicity, education and income. The rate of those who had sought some professional help was higher among those with suicidal plan (71.7%) and attempt (72.3%) as compared to those with suicidal ideation (48.7%) and those with MDD but no suicidal behaviour (29%). Conclusion: Individuals with MDD and suicidal behaviour do differ from their non-suicidal counterparts as they have a different sociodemographic and clinical profi le. There is a need for more research and a better understanding of this population which in turn could lead to the development and implementation of relevant interventions

    Catecholamine Storage Vesicles: Role of Core Protein Genetic Polymorphisms in Hypertension

    Get PDF
    Hypertension is a complex trait with deranged autonomic control of the circulation. The sympathoadrenal system exerts minute-to-minute control over cardiac output and vascular tone. Catecholamine storage vesicles (or chromaffin granules) of the adrenal medulla contain remarkably high concentrations of chromogranins/secretogranins (or “granins”), catecholamines, neuropeptide Y, adenosine triphosphate (ATP), and Ca2+. Within secretory granules, granins are co-stored with catecholamine neurotransmitters and co-released upon stimulation of the regulated secretory pathway. The principal granin family members, chromogranin A (CHGA), chromogranin B (CHGB), and secretogranin II (SCG2), may have evolved from shared ancestral exons by gene duplication. This article reviews human genetic variation at loci encoding the major granins and probes the effects of such polymorphisms on blood pressure, using twin pairs to probe heritability and individuals with the most extreme blood pressure values in the population to study hypertension

    MicroRNA-22 and promoter motif polymorphisms at the Chga locus in genetic hypertension: functional and therapeutic implications for gene expression and the pathogenesis of hypertension

    Get PDF
    Hypertension is a common hereditary syndrome with unclear pathogenesis. Chromogranin A (Chga), which catalyzes formation and cargo storage of regulated secretory granules in neuroendocrine cells, contributes to blood pressure homeostasis centrally and peripherally. Elevated Chga occurs in spontaneously hypertensive rat (SHR) adrenal glands and plasma, but central expression is unexplored. In this report, we measured SHR and Wistar–Kyoto rat (control) Chga expression in central and peripheral nervous systems, and found Chga protein to be decreased in the SHR brainstem, yet increased in the adrenal and the plasma. By re-sequencing, we systematically identified five promoter, two coding and one 3′-untranslated region (3′-UTR) polymorphism at the SHR (versus WKY or BN) Chga locus. Using HXB/BXH recombinant inbred (RI) strain linkage and correlations, we demonstrated genetic determination of Chga expression in SHR, including a cis-quantitative trait loci (QTLs) (i.e. at the Chga locus), and such expression influenced biochemical determinants of blood pressure, including a cascade of catecholamine biosynthetic enzymes, catecholamines themselves and steroids. Luciferase reporter assays demonstrated that the 3′-UTR polymorphism (which disrupts a microRNA miR-22 motif) and promoter polymorphisms altered gene expression consistent with the decline in SHR central Chga expression. Coding region polymorphisms did not account for changes in Chga expression or function. Thus, we hypothesized that the 3′-UTR and promoter mutations lead to dysregulation (diminution) of Chga in brainstem cardiovascular control nuclei, ultimately contributing to the pathogenesis of hypertension in SHR. Accordingly, we demonstrated that in vivo administration of miR-22 antagomir to SHR causes substantial (∼18 mmHg) reductions in blood pressure, opening a novel therapeutic avenue for hypertension

    Physiologic and pathologic functions of the NPP nucleotide pyrophosphatase/phosphodiesterase family focusing on NPP1 in calcification

    Get PDF
    The catabolism of ATP and other nucleotides participates partly in the important function of nucleotide salvage by activated cells and also in removal or de novo generation of compounds including ATP, ADP, and adenosine that stimulate purinergic signaling. Seven nucleotide pyrophosphatase/phosphodiesterase NPP family members have been identified to date. These isoenzymes, related by up conservation of catalytic domains and certain other modular domains, exert generally non-redundant functions via distinctions in substrates and/or cellular localization. But they share the capacity to hydrolyze phosphodiester or pyrophosphate bonds, though generally acting on distinct substrates that include nucleoside triphosphates, lysophospholipids and choline phosphate esters. PPi generation from nucleoside triphosphates, catalyzed by NPP1 in tissues including cartilage, bone, and artery media smooth muscle cells, supports normal tissue extracellular PPi levels. Balance in PPi generation relative to PPi degradation by pyrophosphatases holds extracellular PPi levels in check. Moreover, physiologic levels of extracellular PPi suppress hydroxyapatite crystal growth, but concurrently providing a reservoir for generation of pro-mineralizing Pi. Extracellular PPi levels must be supported by cells in mineralization-competent tissues to prevent pathologic calcification. This support mechanism becomes dysregulated in aging cartilage, where extracellular PPi excess, mediated in part by upregulated NPP1 expression stimulates calcification. PPi generated by NPP1modulates not only hydroxyapatite crystal growth but also chondrogenesis and expression of the mineralization regulator osteopontin. This review pays particular attention to the role of NPP1-catalyzed PPi generation in the pathogenesis of certain disorders associated with pathologic calcification

    Recognition of depression, anxiety, and alcohol abuse in a Chinese rural sample: a cross-sectional study

    Get PDF
    Background Under-utilization of mental health services is a global health issue. Recognition of mental disorders, as the first step to seeking help from professional sources, has been well studied in developed countries, yet little is known about the situation in rural areas of developing countries like China. The purpose of the study is to understand the recognition of depression, anxiety, and alcohol abuse and its predictive factors in a Chinese rural sample Methods Face-to-face interviews were conducted on a representative rural adult sample in a cross-sectional study in China (N = 2052). Respondents were presented with three vignettes depicting depression, anxiety and alcohol abuse and asked to label the disorder and its cause to assess their recognition of the three mental disorders. They also completed the Patient Health Questionnaire (PHQ-9), the Generalized Anxiety Disorder Scale (GAD-7), and the Alcohol Use Disorders Identification Test (AUDIT) to assess their current mental health status. Results The alcohol abuse vignette was more frequently attributed as a mental problem than the depression vignette and anxiety vignette. The correct labeling rate was 16.1 % in the depression vignette, 15.5 % in the anxiety vignette, and 58.2 % in the alcohol vignette. Higher education is the common and also strongest factor positively predicting the recognition of all three vignettes. Beyond that, being female is an independent predictor of correct recognition of alcohol abuse, while recognition of depression and anxiety were positively predicted by younger age. Conclusions Lower recognition of depression and anxiety as compared to alcohol abuse confirms the importance and need to increase the public’s awareness and knowledge about common mental disorders. Recognition of common mental disorders could be improved through general public campaign and education, while paying attention to the unique predictive factors for each specific disorder and implement targeted intervention

    Modulation of purinergic signaling by NPP-type ectophosphodiesterases

    Get PDF
    Extracellular nucleotides can elicit a wide array of cellular responses by binding to specific purinergic receptors. The level of ectonucleotides is dynamically controlled by their release from cells, synthesis by ectonucleoside diphosphokinases and ectoadenylate kinases, and hydrolysis by ectonucleotidases. One of the four structurally unrelated families of ectonucleotidases is represented by the NPP-type ectophosphodiesterases. Three of the seven members of the NPP family, namely NPP1–3, are known to hydrolyze nucleotides. The enzymatic action of NPP1–3 (in)directly results in the termination of nucleotide signaling, the salvage of nucleotides and/or the generation of new messengers like ADP, adenosine or pyrophosphate. NPP2 is unique in that it hydrolyzes both nucleotides and lysophospholipids and, thereby, generates products that could synergistically promote cell motility. We review here the enzymatic properties of NPPs and analyze current evidence that links their nucleotide-hydrolyzing capability to epithelial and neural functions, the immune response and cell motility
    corecore