50 research outputs found

    Viscosity coefficients for hadron and quark-gluon phases

    Full text link
    The shear (η\eta) and bulk (ζ\zeta) viscosities are calculated in a quasiparticle relaxation time approximation. The hadron phase is described within the relativistic mean field based model with scaled hadron masses and couplings. The quark phase is treated in terms of the heavy quark bag model fitted to the lattice data. A two-phase model allowing for the first order phase transition from the hadron phase to the strongly coupled quark gluon plasma is constructed by means of the Gibbs conditions. Temperature and baryon density dependence of the calculated viscosity-to-entropy ratios (η/s\eta/s, ζ/s\zeta/s) are analyzed and compared with those obtained in other models. Special attention is paid to the behavior of viscosity coefficients near the critical temperature, from both hadron and quark-gluon side. Effects of resonance widths on viscosities and viscosity-to-entropy ratios are estimated.Comment: 56 pages, 22 figure

    Relativistic Mean-Field Model with Scaled Hadron Masses and Couplings

    Full text link
    Here we continue to elaborate properties of the relativistic mean-field based model (SHMC) proposed in ref. [6] where hadron masses and coupling constants depend on the σ\sigma-meson field. The validity of approximations used in [6] is discussed. We additionally incorporate contribution of meson excitations to the equations of motion. We also estimate the effects of the particle width. It is demonstrated that the inclusion of the baryon-baryon hole and baryon-antibaryon loop terms, if performed perturbatively, destroys the consistency of the model.Comment: 44 pages, 14 figures; corrected according to referee's remarks, version accepted for publication in Nucl. Phys.

    Viscosity of hadron matter within relativistic mean-field based model with scaled hadron masses and couplings

    Full text link
    The shear (η\eta) and bulk (ζ\zeta) viscosities are calculated in a quasiparticle relaxation time approximation for a hadron matter described within the relativistic mean-field based model with scaled hadron masses and couplings. Comparison with results of other models is presented. We demonstrate that a small value of the shear viscosity to entropy density ratio required for explaining a large elliptic flow observed at RHIC may be reached in the hadron phase. Large values of the bulk viscosity are noted in case of the baryon enriched matter.Comment: 16 pages, 6 figures; minor clarifying change

    Electromagnetic field evolution in relativistic heavy-ion collisions

    Full text link
    The hadron string dynamics (HSD) model is generalized to include the creation and evolution of retarded electromagnetic fields as well as the influence of the magnetic and electric fields on the quasiparticle propagation. The time-space structure of the fields is analyzed in detail for non-central Au+Au collisions at sNN=\sqrt{s_{NN}}=200 GeV. It is shown that the created magnetic field is highly inhomogeneous but in the central region of the overlapping nuclei it changes relatively weakly in the transverse direction. For the impact parameter b=b=10 fm the maximal magnetic field - perpendicularly to the reaction plane - is obtained of order eBy/mπ2∼eB_y/m_\pi^2\sim5 for a very short time ∼\sim 0.2 fm/c, which roughly corresponds to the time of a maximal overlap of the colliding nuclei. We find that at any time the location of the maximum in the eByeB_y distribution correlates with that of the energy density of the created particles. In contrast, the electric field distribution, being also highly inhomogeneous, has a minimum in the center of the overlap region. Furthermore, the field characteristics are presented as a function of the collision energy and the centrality of the collisions. To explore the effect of the back reaction of the fields on hadronic observables a comparison of HSD results with and without fields is exemplified. Our actual calculations show no noticeable influence of the electromagnetic fields - created in heavy-ion collisions - on the effect of the electric charge separation with respect to the reaction plane.Comment: 17 pages, 22 figures, title changed by editor, accepted for PR

    Shear and bulk viscosities for pure glue matter

    Full text link
    Shear η\eta and bulk ζ\zeta viscosities are calculated in a quasiparticle model within a relaxation time approximation for pure gluon matter. Below TcT_c the confined sector is described within a quasiparticle glueball model. Particular attention is paid to behavior of the shear and bulk viscosities near TcT_c. The constructed equation of state reproduces the first-order phase transition for the glue matter. It is shown that with this equation of state it is possible to describe the temperature dependence of the shear viscosity to entropy ratio η/s\eta/s and the bulk viscosity to entropy ratio ζ/s\zeta/s in reasonable agreement with available lattice data but absolute values of the ζ/s\zeta/s ratio underestimate the upper limits of this ratio in the lattice measurements typically by an order of magnitude.Comment: 8 pages, 4 figures; the published versio

    Contribution of the massive photon decay channel to neutrino cooling of neutron stars

    Get PDF
    We consider massive photon decay reactions via intermediate states of electron-electron-holes and proton-proton-holes into neutrino-antineutrino pairs in the course of neutron star cooling. These reactions may become operative in hot neutron stars in the region of proton pairing where the photon due to the Higgs-Meissner effect acquires an effective mass mγm_{\gamma} that is small compared to the corresponding plasma frequency. The contribution of these reactions to neutrino emissivity is calculated; it varies with the temperature and the photon mass as T3/2mγ7/2e−mγ/TT^{3/2}m_{\gamma}^{7/2} e^{-m_{\gamma}/T} for T<mγT < m_{\gamma}. Estimates show that these processes appear as extra efficient cooling channels of neutron stars at temperatures T≃(109−1010)T \simeq (10^9-10^{10}) K.Comment: accepted to publication in Zh. Eksp. Teor. Fiz. (JETP

    Relativistic Mean-Field Theory Equation of State of Neutron Star Matter and a Maxwellian Phase Transition to Strange Quark Matter

    Full text link
    The equation of state of neutron star matter is examined in terms of the relativistic mean-field theory, including a scalar-isovector δ\delta-meson effective field. The constants of the theory are determined numerically so that the empirically known characteristics of symmetric nuclear matter are reproduced at the saturation density. The thermodynamic characteristics of both asymmetric nucleonic matter and β\beta-equilibrium hadron-electron npenpe-plasmas are studied. Assuming that the transition to strange quark matter is an ordinary first-order phase transition described by Maxwell's rule, a detailed study is made of the variations in the parameters of the phase transition owing to the presence of a δ\delta-meson field. The quark phase is described using an improved version of the bag model, in which interactions between quarks are accounted for in a one-gluon exchange approximation. The characteristics of the phase transition are determined for various values of the bag parameter within the range B∈[60,120]B\in[60,120] MeV/fm3MeV/fm^{3} and it is shown that including a δ\delta-meson field leads to a reduction in the phase transition pressure P0P_{0} and in the concentrations nNn_{N} and nQn_{Q} at the phase transition point.Comment: 17 pages, 8 figure

    Flattening of Single-Particle Spectra in Strongly Correlated Electron Systems and the Violation of the Wiedemann-Franz Law

    Full text link
    The renormalization of the Wiedemann-Franz (WF) ratio in strongly correlated electron systems is analyzed within the Landau quasiparticle picture. We demonstrate that the WF law is violated: (i) at the quantum critical point, where the effective mass diverges, and (ii) beyond a point of fermion condensation, where the single-particle spectrum ϵ(p)\epsilon(p) becomes flat. Results of the analysis are compared with available experimental data.Comment: 6 pages, 5 figures, added reference

    Two Scenarios of the Quantum Critical Point

    Full text link
    Two different scenarios of the quantum critical point (QCP), a zero-temperature instability of the Landau state, related to the divergence of the effective mass, are investigated. Flaws of the standard scenario of the QCP, where this divergence is attributed to the occurrence of some second-order phase transition, are demonstrated. Salient features of a different {\it topological} scenario of the QCP, associated with the emergence of bifurcation points in equation ϵ(p)=μ\epsilon(p)=\mu that ordinarily determines the Fermi momentum, are analyzed. The topological scenario of the QCP is applied to three-dimensional (3D) Fermi liquids with an attractive current-current interaction.Comment: 6 pages, added new discussion and 2 figure

    Lattice QCD Constraints on Hybrid and Quark Stars

    Full text link
    A QCD-motivated dynamical-quasiparticle model with parameters adjusted to reproduce the lattice-QCD equation of state is extrapolated from region of high temperatures and moderate baryonic densities to the domain of high baryonic densities and zero temperature. The resulting equation of state matched with realistic hadronic equations of state predicts a phase transition into the quark phase at higher densities than those reachable in neutron star interiors. This excludes the possibility of the existence of hybrid (hadron-quark) stars. Pure quark stars are possible and have low masses, small radii and very high central densities. Similar results are obtained for a simple bag model with massive quarks, fitted to reproduce the same lattice results. Self-bound quark matter is also excluded within these models. Uncertainties in the present extrapolation re discussed. Comparison with standard bag models is made.Comment: 13 p., 8 figs., 7 tables, Version accepted by Phys. Rev.
    corecore