1,005 research outputs found
Theory of the collapsing axisymmetric cavity
We investigate the collapse of an axisymmetric cavity or bubble inside a
fluid of small viscosity, like water. Any effects of the gas inside the cavity
as well as of the fluid viscosity are neglected. Using a slender-body
description, we show that the minimum radius of the cavity scales like , where is the time from collapse. The exponent
very slowly approaches a universal value according to . Thus, as observed in a number of recent experiments, the
scaling can easily be interpreted as evidence of a single non-trivial scaling
exponent. Our predictions are confirmed by numerical simulations
Measurement of Time Resolution of Scintillation Detectors with EQR-15 Silicon Photodetectors for the Time-of-Flight Neutron Detector of the BM@N Experiment
To study the dependence of the equation of state of high density nuclear
matter on the term characterizing the isospin (proton-neutron) asymmetry of
nuclear matter, it is necessary to measure azimuthal flow of neutrons as well
as azimuthal flow of charged particles from a dense nuclear matter in the
nuclear-nuclear collisions. For this purpose INR RAS is developing a new
high-granular neutron detector which will be used in the BM@N experiment at the
extracted beam of the Nuclotron accelerator at JINR (Dubna). This detector will
identify neutrons and measure their energies in the heavy-ion collisions up to
4 GeV per nucleon.
This article presents the results of measurements of the time resolution and
light yields of samples of scintillation detectors with sizes
404025 mm that will be used in a neutron detector based on
the currently available fast plastic scintillator manufactured by JINR using an
EQR15 11-6060D-S photodetector for light readout. For comparison, the results
of measurements for a detector of the same size with a fast scintillator EJ-230
and with the same type of photodetector are given. The measurements were made
on cosmic muons as well as on the electron synchrotron "Pakhra" of the Lebedev
Physical Institute of the Russian Academy of Sciences located in Troitsk,
Moscow
Methodology for building extraction templates for Russian language in knowledge-based IE systems
In this paper we describe methodology for building information extraction (IE) rules. Rules are usually developed by experts and are widely used in knowledge-based IE systems. They consist of two parts: the left-hand side (LHS) of a rule is a template that matches a certain syntactico-semantic structure (SSS) and the right-hand side is an action that is executed when LHS template is matched against a particular text fragment. In the paper we describe the process of building a more complex LHS part (further in the paper we will refer to LHS as template). This methodology was used for developing the information extraction system that extracts business events from news articles written in Russian language. Β© Copyright 2012 Hewlett-Packard Development Company, L.P
Dictionary and pattern-based recognition of organization names in Russian news texts
This paper describes a part of the event extraction system which has been developed in collaboration with HP Labs Russia. The domain of input texts is business news feeds. One of the most important event participant types is 'Organization'. This paper is focused on the problem of organization names recognition in Russian news texts. Two approaches have been implemented. The first is dictionary-based. We propose an algorithm to make a dictionary from a set of legal body full names gathered from a government registry. The main problems with the dictionary matching are incorrect stemming and significant fraction of ambiguous names among dictionary entries. The second recognition approach is based on usage of local context clues and internal name words. These words constitute patterns which are intrinsic to organization names. These patterns enable recognition of non-dictionary names. We propose an algorithm to derive such patterns from the original dictionary. Β© 2013 Hewlett-Packard Development Company, L.P
Synthesis of power saving algorithms of variable frequency drives of gastransport systems
ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ ΠΏΡΠΈΠ½ΡΠΈΠΏΡ, ΡΡΡΡΠΊΡΡΡΡ ΠΈΠ½Π²Π°ΡΠΈΠ°Π½ΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ ΡΠ΅Π³ΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΎΠ½Π½ΡΡ
Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄ΠΎΠ² ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
Π°Π³ΡΠ΅Π³Π°ΡΠΎΠ² ΠΊΠΎΠΌΠΏΡΠ΅ΡΡΠΎΡΠ½ΡΡ
ΡΡΠ°Π½ΡΠΈΠΉ Π΄Π»Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠ½Π΅ΡΠ³ΠΎΡΠ±Π΅ΡΠ΅Π³Π°ΡΡΠ΅Π³ΠΎ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π° ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½Π°Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΈΠ½Π²Π°ΡΠΈΠ°Π½ΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ Ρ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·Π°Π½Π½ΡΠΌΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠ°ΠΌΠΈ Π³Π°Π·ΠΎΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ, Π±Π°Π·ΠΈΡΡΡΡΠ°ΡΡΡ Π½Π° ΡΠ΅ΠΎΡΠΈΠΈ ΠΏΠ»Π°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°, Ρ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠ΅ΠΉ Π½Π° ΡΡΠ°ΠΏΠ°Ρ
ΠΌΠΎΠ΄Π΅ΡΠ½ΠΈΠ·Π°ΡΠΈΠΈ ΠΈ Π½ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΡΠΎΠΈΡΠ΅Π»ΡΡΡΠ²Π° ΠΊΠΎΠΌΠΏΡΠ΅ΡΡΠΎΡΠ½ΡΡ
ΡΡΠ°Π½ΡΠΈΠΉ. ΠΠΎΠ»ΡΡΠ΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π°Π½Π°Π»ΠΈΠ·Π° ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π½ΠΎΠ²ΡΡ
Π°Π³ΡΠ΅Π³Π°ΡΠΎΠ² Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π°ΠΌΠΈ Ρ ΡΠ½Π΅ΡΠ³ΠΎΡΠ±Π΅ΡΠ΅Π³Π°ΡΡΠΈΠΌΠΈ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ°ΠΌΠΈ Π½Π° ΡΡΠ΄Π΅ ΠΊΠΎΠΌΠΏΡΠ΅ΡΡΠΎΡΠ½ΡΡ
ΡΡΠ°Π½ΡΠΈΠΉ Π³Π°Π·ΠΎΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ.There offered the principles, structures of invariant systems of regulation and technique of obtaining of regression algorithms of electric drives of compressor stationsβ basic technological units for effective power saving control. The complex technique of research of various invariant systems with the interconnected objects of gas-transport systems, based on the experimental design theory, with realization at the stages of modernization and new building of compressor stations is presented. There received the results of the analysis of practical application of the new units with electric drives with power saving algorithms on a number of compressor stations of gas-transport systems
Researches of air and fuel rate influence on oxygen level in emissions of new type medium power coal boiler
The article deals with sustained fire coal boilers requirements engineering from a creating energy saving and ecological compatibility point of view. The article gives experimental data obtained on boilers which was made by LLP "ΠΠ°ΡΠΏΠ»Π°Π·", Karaganda, Republic of Kazakhstan
The production of a machine designed for the cold radial cyclic forging of solid and tube billets
This paper gives an account of a new project for the design and production of a radial cyclic forging machine. This new design considers the advantages of its predecessor and of modern trends within the engineering industry. The use of this machine could enable the considerable reduction of production wastes. Besides the cold cyclic technology implemented in this machine, it will also allow for the increase in energy efficiency, for the minimum capital investments. Β© 2014 WIT Press.International Journal of Safety and Security Engineering;International Journal of Sustainable Development and Planning;WIT Transactions on Ecology and the Environmen
Π’ΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΡΠ΅ ΡΡΡΡΠΊΡΡΡΠ½ΠΎβΠ²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΈΠΌΠ±Π΅ΡΠ»ΠΈΡΠΎΠ²ΡΡ ΡΡΡΠ±ΠΎΠΊ ΠΡΡΠ±ΠΈΠ½ΡΠΊΠΎΠΉ ΠΈ ΠΠΎΡΡΠΎΠ±ΠΈΠ½ΡΠΊΠΎΠΉ (Π―ΠΊΡΡΡΠΊΠ°Ρ Π°Π»ΠΌΠ°Π·ΠΎΠ½ΠΎΡΠ½Π°Ρ ΠΏΡΠΎΠ²ΠΈΠ½ΡΠΈΡ)
The Nyurbinskaya and Botuobinskaya kimberlitic pipes were in the focus of a comprehensive study aimed to investigate their structural and material positions as the main deposits in the Nakyn field (Yakutian Diamondifeβ rous Province, Russia). This paper present the study results and 3D structuralβmaterial models showing the formation of these deposits. In application to geological studies, the 3D modeling technologies allow taking into account the aniβ sotropy of material complexes comprising kimberlite pipes, as well as inconsistencies in the structural and morphoβ logical properties of oreβbearing structures. In order to discover the structural positions and features of the faultβ block structures of the deposits, tectonophysical methods were used in combination with tacheometric surveys. Based on this more comprehensive and integrated approach, the existing fault patterns were clarified in detail; elements of the internal fault structure were mapped; fault azimuths and dip angles were estimated; and thickness values were obtained. Computer processed data were used to construct 3D models showing the faultβblock structures of the Nyurbinskaya and Botuobinskaya pipes. The mineralogical, petrographic and diamondβbearing features of various kimberlite generations comprising these pipes were investigated in order to reconstruct the morphology and spatial positions of each of the selected complexes in the current crossβsection and in accordance with intrusion phases. The 3D frame models of geological bodies were constructed for all the magmatic phases, including porphyry kimberlite and eruptive and autolithic kimberlite breccia. The structuralβmaterial models for the Nyurbinskaya and Botuobinβ skaya pipes were based on a synthesis of their material and structural features discovered in the previous stages of the study. The models presented in this paper are used to discuss temporal relationships between faults in the kimβ berlitic structure and material complexes comprising the pipes. The models show that the pipes occurred in the nearβ surface structures of shear tension, which developed in the areas where the NNEβstriking fault was conjugated with the ENEβ and NEβstriking faults in the fault zone resulting from several stage of the tectonoβmagmatic activity. In this case, the kimberlite melt material was transported in discrete portions from the source through deepβseated faults, and the faults acted as channels characterized by an increased permeability. Disjunctive elements identified in this study facilitated magma movements and localization of kimberlite bodies.Π ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΠΊ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΡΡΡΡΠΊΡΡΡΠ½ΠΎΠΉ ΠΈ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ·ΠΈΡΠΈΠΈ ΠΊΠΎΡΠ΅Π½Π½ΡΡ
ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΠΉ ΠΠ°ΠΊΡΠ½ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ β ΠΊΠΈΠΌΠ±Π΅ΡΠ»ΠΈΡΠΎΠ²ΡΡ
ΡΡΡΠ±ΠΎΠΊ ΠΡΡΠ±ΠΈΠ½ΡΠΊΠΎΠΉ ΠΈ ΠΠΎΡΡΠΎΠ±ΠΈΠ½ΡΠΊΠΎΠΉ, ΡΡΠΎ Π½Π°ΡΠ»ΠΎ ΠΎΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π² ΡΡΠ΅Ρ
ΠΌΠ΅ΡΠ½ΡΡ
ΡΡΡΡΠΊΡΡΡΠ½ΠΎβΠ²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΌΠΎΠ΄Π΅Π»ΡΡ
ΠΈΡ
ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅ΠΌΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΊΠ°ΠΊ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΡΠΎΠ³ΡΠ΅ΡΡΠΈΠ²Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π³Π΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ·Π½Π°Π½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΡΡΠ΅ΡΡΡ Π²ΡΡΠΎΠΊΡΡ ΡΡΠ΅ΠΏΠ΅Π½Ρ ΠΈΠ·ΠΌΠ΅Π½ΡΠΈΠ²ΠΎΡΡΠΈ (Π°Π½ΠΈΠ·ΠΎΡΡΠΎΠΏΠΈΠΈ) Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ², ΡΠ»Π°Π³Π°ΡΡΠΈΡ
ΠΊΠΈΠΌΠ±Π΅ΡΠ»ΠΈΡΠΎΠ²ΡΠ΅ ΡΡΡΠ±ΠΊΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ Π½Π΅Π²ΡΠ΄Π΅ΡΠΆΠ°Π½Π½ΠΎΡΡΡ ΡΡΡΡΠΊΡΡΡΠ½ΠΎβΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΡΡΠ΄ΠΎΠ²ΠΌΠ΅ΡΠ°ΡΡΠ΅ΠΉ ΡΡΡΡΠΊΡΡΡΡ. Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ, ΡΠ²ΡΠ·Π°Π½Π½ΡΡ
Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΡΡΡΠΊΡΡΡΠ½ΠΎΠΉ ΠΏΠΎΠ·ΠΈΡΠΈΠΈ ΠΈ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΡΠ°Π·Π»ΠΎΠΌΠ½ΠΎβΠ±Π»ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ ΡΡΡΠΎΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΡΡ
ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΠΉ, ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ»ΠΎΡΡ ΠΏΡΡΠ΅ΠΌ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ΅ΠΊΡΠΎΠ½ΠΎΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π² ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ Ρ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΡΠ°Ρ
Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ΅ΠΌΠΊΠΈ. Π‘ ΠΈΡ
ΠΏΠΎΠΌΠΎΡΡΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄Π΅ΡΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠΈΠ΅ ΡΡ
Π΅ΠΌΡ ΡΠ°Π·Π»ΠΎΠΌΠ½ΠΎΠ³ΠΎ ΡΡΡΠΎΠ΅Π½ΠΈΡ ΡΡΠ°ΡΡΠΊΠΎΠ², ΠΎΡΠΊΠ°ΡΡΠΈΡΠΎΠ²Π°Π½Ρ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ Π²Π½ΡΡΡΠ΅Π½Π½Π΅ΠΉ ΡΡΡΡΠΊΡΡΡΡ ΡΠ°Π·Π»ΠΎΠΌΠΎΠ², ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ Π°Π·ΠΈΠΌΡΡΡ ΠΈ ΡΠ³Π»Ρ ΠΏΠ°Π΄Π΅Π½ΠΈΡ Π½Π°ΡΡΡΠ΅Π½ΠΈΠΉ, ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° ΠΈΡ
ΠΌΠΎΡΠ½ΠΎΡΡΡ. ΠΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΠΏΠΎΡΡΡΠΎΠ΅Π½Ρ ΡΡΠ΅Ρ
ΠΌΠ΅ΡΠ½ΡΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠ°Π·Π»ΠΎΠΌΠ½ΠΎβΠ±Π»ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ ΡΡΡΠΎΠ΅Π½ΠΈΡ ΡΡΠ°ΡΡΠΊΠΎΠ² Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΡΡΡΠ±ΠΎΠΊ ΠΡΡΠ±ΠΈΠ½ΡΠΊΠΎΠΉ ΠΈ ΠΠΎΡΡΠΎΠ±ΠΈΠ½ΡΠΊΠΎΠΉ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠΈΠ½Π΅ΡΠ°Π»ΠΎΠ³ΠΎβΠΏΠ΅ΡΡΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΠΈ ΡΠΏΠ΅ΡΠΈΡΠΈΠΊΠΈ Π°Π»ΠΌΠ°Π·ΠΎΠ½ΠΎΡΠ½ΠΎΡΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΉ ΠΊΠΈΠΌΠ±Π΅ΡΠ»ΠΈΡΠ°, ΡΠ»Π°Π³Π°ΡΡΠΈΡ
ΡΡΡΠ±ΠΊΠΈ ΠΡΡΠ±ΠΈΠ½ΡΠΊΡΡ ΠΈ ΠΠΎΡΡΠΎΠ±ΠΈΠ½ΡΠΊΡΡ, ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡ ΠΈ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· Π²ΡΠ΄Π΅Π»Π΅Π½Π½ΡΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² ΠΊΠ°ΠΊ Π² ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΡΡΠ΅Π·Π΅, ΡΠ°ΠΊ ΠΈ Π½Π° ΡΡΠ°ΠΏΠ΅ Π²Π½Π΅Π΄ΡΠ΅Π½ΠΈΡ. ΠΠ»Ρ Π²ΡΠ΅Ρ
ΠΌΠ°Π³ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ°Π· (ΠΏΠΎΡΡΠΈΡΠΎΠ²ΡΠΉ ΠΊΠΈΠΌΠ±Π΅ΡΠ»ΠΈΡ, ΡΡΡΠΏΡΠΈΠ²Π½Π°Ρ ΠΊΠΈΠΌΠ±Π΅ΡΠ»ΠΈΡΠΎΠ²Π°Ρ Π±ΡΠ΅ΠΊΡΠΈΡ ΠΈ Π°Π²ΡΠΎΠ»ΠΈΡΠΎΠ²Π°Ρ ΠΊΠΈΠΌΠ±Π΅ΡΠ»ΠΈΡΠΎΠ²Π°Ρ Π±ΡΠ΅ΠΊΡΠΈΡ) ΡΠΎΠ·Π΄Π°Π½Ρ ΠΎΠ±ΡΠ΅ΠΌΠ½ΡΠ΅ ΠΊΠ°ΡΠΊΠ°ΡΠ½ΡΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈΡ
Π³Π΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅Π». Π Π°Π·ΡΠ°Π±ΠΎΡΠΊΠ° ΡΡΡΡΠΊΡΡΡΠ½ΠΎβΠ²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π΄Π»Ρ ΡΡΡΠ±ΠΎΠΊ ΠΡΡΠ±ΠΈΠ½ΡΠΊΠΎΠΉ ΠΈ ΠΠΎΡΡΠΎΠ±ΠΈΠ½ΡΠΊΠΎΠΉ ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ»Π°ΡΡ ΠΏΡΡΠ΅ΠΌ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π΄Π°Π½Π½ΡΡ
ΠΎ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΈ ΡΡΡΡΠΊΡΡΡΠ½ΡΡ
ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΡ
ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΠΉ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Π² Ρ
ΠΎΠ΄Π΅ ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠΈΡ
ΡΡΠ°ΠΏΠΎΠ² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ. Π ΡΠ°ΠΌΠΊΠ°Ρ
ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌΡΡ
ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π²ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΠΏΡΠΎΡΠ΅ΡΡΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠ°Π·ΡΡΠ²Π½ΡΡ
Π½Π°ΡΡΡΠ΅Π½ΠΈΠΉ, ΡΠΎΡΠΌΠΈΡΡΡΡΠΈΡ
ΠΊΠΈΠΌΠ±Π΅ΡΠ»ΠΈΡΠΎΠ²ΠΌΠ΅ΡΠ°ΡΡΡΡ ΡΡΡΡΠΊΡΡΡΡ, ΠΈ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ², ΡΠ»Π°Π³Π°ΡΡΠΈΡ
ΡΡΡΠ±ΠΊΠΈ. Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΌ ΠΌΠΎΠ΄Π΅Π»ΡΠΌ, ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΡΠ±ΠΎΠΊ ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΠ»ΠΎ Π² ΠΏΡΠΈΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΡΡ
ΡΡΡΡΠΊΡΡΡΠ°Ρ
ΠΏΡΠΈΡΠ΄Π²ΠΈΠ³ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ°ΡΡΡΠΆΠ΅Π½ΠΈΡ, ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΡΡ
Π½Π° ΡΡΠ°ΡΡΠΊΠ°Ρ
ΡΠΎΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΡΠ°Π·Π»ΠΎΠΌΠ° ΡΠ΅Π²Π΅ΡβΡΠ΅Π²Π΅ΡΠΎβΠ²ΠΎΡΡΠΎΡΠ½ΠΎΠΉ ΠΎΡΠΈΠ΅Π½ΡΠΈΡΠΎΠ²ΠΊΠΈ Ρ ΡΠ°ΡΡΠ½ΡΠΌΠΈ Π΄ΠΈΡΠ»ΠΎΠΊΠ°ΡΠΈΡΠΌΠΈ Π·ΠΎΠ½Ρ ΡΠ°Π·ΡΡΠ²Π½ΡΡ
Π½Π°ΡΡΡΠ΅Π½ΠΈΠΉ Π²ΠΎΡΡΠΎΠΊβΡΠ΅Π²Π΅ΡΠΎβΠ²ΠΎΡΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΈ ΡΠ΅Π²Π΅ΡΠΎβΠ·Π°ΠΏΠ°Π΄Π½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ
ΡΡΠ°ΠΏΠΎΠ² ΡΠ΅ΠΊΡΠΎΠ½ΠΎΠΌΠ°Π³ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²ΠΈΠ·Π°ΡΠΈΠΈ. ΠΡΠΈ ΡΡΠΎΠΌ Π΄ΠΎΡΡΠ°Π²ΠΊΠ° Π΄ΠΈΡΠΊΡΠ΅ΡΠ½ΡΡ
ΠΏΠΎΡΡΠΈΠΉ ΠΊΠΈΠΌΠ±Π΅ΡΠ»ΠΈΡΠΎΠ²ΠΎΠ³ΠΎ ΡΠ°ΡΠΏΠ»Π°Π²Π° ΠΎΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΠ»Π° ΠΏΠΎ Π³Π»ΡΠ±ΠΈΠ½Π½ΡΠΌ ΡΠ°Π·Π»ΠΎΠΌΠ°ΠΌ, Π²ΡΡΡΡΠΏΠ°ΡΡΠΈΠΌ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΏΡΠΎΠ½ΠΈΡΠ°Π΅ΠΌΠΎΡΡΠΈ. Π ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΠΈ Π²ΡΠ΄Π΅Π»Π΅Π½Π½ΡΠ΅ Π΄ΠΈΠ·ΡΡΠ½ΠΊΡΠΈΠ²Π½ΡΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΡΠΎΠ±ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ, Π±Π»Π°Π³ΠΎΠΏΡΠΈΡΡΠ½ΡΠ΅ Π΄Π»Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΌΠ°Π³ΠΌΡ ΠΈ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΊΠΈΠΌΠ±Π΅ΡΠ»ΠΈΡΠΎΠ²ΡΡ
ΡΠ΅Π»
Π Π°ΡΡΠΎΠ»Ρ Π³Π»ΡΠ±ΠΎΠΊΠΈΡ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠΎΠ² ΠΊΠΈΠΌΠ±Π΅ΡΠ»ΠΈΡΠΎΠ²ΠΎΠΉ ΡΡΡΠ±ΠΊΠΈ Π£Π΄Π°ΡΠ½Π°Ρ
The study was focused on groundwaters sampled from boreholes drilled to deep horizons of the Udachnaya kimberlite pipe and the host sedimentary strata. Brines in the rocks significantly complicate underground mining. Analysis of the hydrogeological setting is required to ensure safety during mining to the design levels. The features of chemical composition and the geochemical evolution of brines in the crust can be clarified in a more detail on the basis of new reliable data on strong chloride saline solutions that formed in complex geological and tectonic conditions. Kimberlite and water samples were taken from the ore bodies and host sedimentary strata at the depth of 680β980 m. Conventional methods of quantitative and instrumental analysis were applied to study the chemical composition of brines. Mineral composition of kimberlite was determined by powder diffractography and X-ray fluorescence methods. Geological, structural and tectonophysical methods were used to reveal and describe the tectonic structure of the kimberlite pipe area. Groundwaters with salinity of 280β406 g/L are strong and very strong calcium chloride brines. The chlorine-bromine ratio has a small range of 48β57; the sodium-chlorine ratio varies from 0.11 to 0.18. According to their geochemical features, the studied groundwaters are metamorphosed brines that have analogues across the Siberian platform. Physical and chemical processes were simulated to investigate the degrees of saturation of strong brines relative to the minerals of water-bearing rocks. The simulation results show that the brines in the Western ore body of the Udachnaya pipe are strongly undersaturated in the deep horizons in comparison to carbonate, sulfate and chloride minerals. This suggests possible dilution of brines during their geochemical evolution. A detailed study of the tectonic structure identified structural elements that control the distribution and migration of groundwaters in the rocks. In the mining sites, brines occur mainly in the fault zones, fault junctions and intersections with the contacts of kimberlite bodies. Integration of hydrogeological and geostructural data can provide a basis for prediction and assessment of the sites with increased water inflow in the deep horizons involved in mining.Π ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½ΡΡ
Π²ΠΎΠ΄, Π²ΡΠΊΡΡΡΡΡ
ΡΠΊΠ²Π°ΠΆΠΈΠ½Π°ΠΌΠΈ Π² Π³Π»ΡΠ±ΠΎΠΊΠΈΡ
Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Ρ
ΠΊΠΈΠΌΠ±Π΅ΡΠ»ΠΈΡΠΎΠ²ΠΎΠΉ ΡΡΡΠ±ΠΊΠΈ Π£Π΄Π°ΡΠ½Π°Ρ ΠΈ Π²ΠΌΠ΅ΡΠ°ΡΡΠΈΡ
ΠΎΡΠ°Π΄ΠΎΡΠ½ΡΡ
ΡΠΎΠ»ΡΠ°Ρ
. Π Π°ΡΡΠΎΠ»Ρ, ΠΎΠ±Π²ΠΎΠ΄Π½ΡΡ Π³ΠΎΡΠ½ΡΠΉ ΠΌΠ°ΡΡΠΈΠ², ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΡΠ»ΠΎΠΆΠ½ΡΡΡ ΠΏΡΠΎΡ
ΠΎΠ΄ΠΊΡ ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½ΡΡ
Π³ΠΎΡΠ½ΡΡ
Π²ΡΡΠ°Π±ΠΎΡΠΎΠΊ. ΠΠ½Π°Π»ΠΈΠ· Π³ΠΈΠ΄ΡΠΎΠ³Π΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΡΡ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΡ ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π΄ΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠ½ΡΡ
ΠΎΡΠΌΠ΅ΡΠΎΠΊ. ΠΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ Π½ΠΎΠ²ΡΡ
Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΡΡ
ΡΠ²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΎ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΡΠ΅ΠΏΠΊΠΈΡ
ΡΠ°ΡΡΠΎΠ»ΠΎΠ² Ρ
Π»ΠΎΡΠΈΠ΄Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° Π² ΡΠ»ΠΎΠΆΠ½ΡΡ
Π³Π΅ΠΎΠ»ΠΎΠ³ΠΎ-ΡΠ΅ΠΊΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Π΄Π°ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΎΠ±ΡΡΡΠ½ΠΈΡΡ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° ΠΈ Π³Π΅ΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ²ΠΎΠ»ΡΡΠΈΠΈ ΡΠ°ΡΡΠΎΠ»ΠΎΠ² Π² Π·Π΅ΠΌΠ½ΠΎΠΉ ΠΊΠΎΡΠ΅. ΠΠ»ΡΠ±ΠΈΠ½Π° ΠΎΡΠ±ΠΎΡΠ° ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΠΊΠΈΠΌΠ±Π΅ΡΠ»ΠΈΡΠΎΠ² ΠΈ ΠΏΡΠΎΠ± Π²ΠΎΠ΄Ρ ΠΈΠ· ΡΡΠ΄Π½ΡΡ
ΡΠ΅Π» ΠΈ Π²ΠΌΠ΅ΡΠ°ΡΡΠΈΡ
ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΡΠΎΡΡΠ°Π²ΠΈΠ»Π° 680β980 ΠΌ. Π₯ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΎΡΡΠ°Π² ΡΠ°ΡΡΠΎΠ»ΠΎΠ² ΠΏΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌΠΈ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΡΠΌΠΈ ΠΈ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ, ΠΌΠΈΠ½Π΅ΡΠ°Π»ΡΠ½ΡΠΉ ΡΠΎΡΡΠ°Π² ΠΊΠΈΠΌΠ±Π΅ΡΠ»ΠΈΡΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΠΎΡΠΎΡΠΊΠΎΠ²ΠΎΠΉ Π΄ΠΈΡΡΠ°ΠΊΡΠΎΠ³ΡΠ°ΡΠΈΠΈ ΠΈ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠ½ΡΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ, ΡΠ΅ΠΊΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΡΡΠ°ΡΡΠΊΠ° ΠΊΠΈΠΌΠ±Π΅ΡΠ»ΠΈΡΠΎΠ²ΠΎΠΉ ΡΡΡΠ±ΠΊΠΈ ΠΎΡ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΎΠ²Π°Π½ΠΎ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³Π΅ΠΎΠ»ΠΎΠ³ΠΎ-ΡΡΡΡΠΊΡΡΡΠ½ΡΡ
ΠΈ ΡΠ΅ΠΊΡΠΎΠ½ΠΎΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΈΠ΅ΠΌΠΎΠ². ΠΠΎΠ΄Π·Π΅ΠΌΠ½ΡΠ΅ Π²ΠΎΠ΄Ρ Ρ ΠΌΠΈΠ½Π΅ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠ΅ΠΉ 280β406 Π³/Π΄ΠΌ3 ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΡΠΎΠ±ΠΎΠΉ ΠΊΡΠ΅ΠΏΠΊΠΈΠ΅ ΠΈ Π²Π΅ΡΡΠΌΠ° ΠΊΡΠ΅ΠΏΠΊΠΈΠ΅ ΡΠ°ΡΡΠΎΠ»Ρ Ρ
Π»ΠΎΡΠΈΠ΄Π½ΠΎΠ³ΠΎ ΠΊΠ°Π»ΡΡΠΈΠ΅Π²ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π°. ΠΠ΅Π»ΠΈΡΠΈΠ½Π° Ρ
Π»ΠΎΡΠ±ΡΠΎΠΌΠ½ΠΎΠ³ΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΈΠΌΠ΅Π΅Ρ Π½Π΅Π±ΠΎΠ»ΡΡΠΎΠΉ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ (48β57), Π½Π°ΡΡΠΈΠΉ-Ρ
Π»ΠΎΡΠ½ΡΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΎΡ 0.11 Π΄ΠΎ 0.18. ΠΠ΅ΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΈΠ·ΡΡΠ΅Π½Π½ΡΡ
ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½ΡΡ
Π²ΠΎΠ΄ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΠΎΡΠ½Π΅ΡΡΠΈ ΠΈΡ
ΠΊ ΠΌΠ΅ΡΠ°ΠΌΠΎΡΡΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΠΌ ΡΠ°ΡΡΠΎΠ»Π°ΠΌ, ΠΈΠΌΠ΅ΡΡΠΈΠΌ Π°Π½Π°Π»ΠΎΠ³ΠΈ Π½Π° Π²ΡΠ΅ΠΉ Π‘ΠΈΠ±ΠΈΡΡΠΊΠΎΠΉ ΠΏΠ»Π°ΡΡΠΎΡΠΌΠ΅. Π€ΠΈΠ·ΠΈΠΊΠΎ-Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ ΠΊΡΠ΅ΠΏΠΊΠΈΡ
ΡΠ°ΡΡΠΎΠ»ΠΎΠ² ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΌΠΈΠ½Π΅ΡΠ°Π»ΠΎΠ² Π²ΠΎΠ΄ΠΎΠ²ΠΌΠ΅ΡΠ°ΡΡΠΈΡ
ΠΏΠΎΡΠΎΠ΄ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ, ΡΡΠΎ ΡΠ°ΡΡΠΎΠ»Ρ Π·Π°ΠΏΠ°Π΄Π½ΠΎΠ³ΠΎ ΡΡΠ΄Π½ΠΎΠ³ΠΎ ΡΠ΅Π»Π° ΡΡΡΠ±ΠΊΠΈ Π£Π΄Π°ΡΠ½Π°Ρ Π² Π³Π»ΡΠ±ΠΎΠΊΠΈΡ
Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Ρ
ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ ΠΊΠ°ΡΠ±ΠΎΠ½Π°ΡΠ½ΡΠΌ, ΡΡΠ»ΡΡΠ°ΡΠ½ΡΠΌ ΠΈ Ρ
Π»ΠΎΡΠΈΠ΄Π½ΡΠΌ ΠΌΠΈΠ½Π΅ΡΠ°Π»Π°ΠΌ ΡΠ΅Π·ΠΊΠΎ Π½Π΅Π΄ΠΎΠ½Π°ΡΡΡΠ΅Π½Ρ, ΡΡΠΎ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΠ΅Ρ ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠΌ ΡΠ°Π·Π±Π°Π²Π»Π΅Π½ΠΈΠΈ ΡΠ°ΡΡΠΎΠ»ΠΎΠ² Π² Ρ
ΠΎΠ΄Π΅ ΠΈΡ
Π³Π΅ΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ²ΠΎΠ»ΡΡΠΈΠΈ. ΠΠ΅ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ΅ΠΊΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π²ΡΡΠ²ΠΈΡΡ ΡΡΡΡΠΊΡΡΡΠ½ΡΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΡΡΠΈΠ΅ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ ΠΌΠΈΠ³ΡΠ°ΡΠΈΡ ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½ΡΡ
Π²ΠΎΠ΄ Π² Π³ΠΎΡΠ½ΠΎΠΌ ΠΌΠ°ΡΡΠΈΠ²Π΅. ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΡΠ°ΡΡΠΎΠ»ΠΎΠ² Π² Π³ΠΎΡΠ½ΡΡ
Π²ΡΡΠ°Π±ΠΎΡΠΊΠ°Ρ
ΠΏΡΠΈΡΡΠΎΡΠ΅Π½Ρ ΠΊ Π·ΠΎΠ½Π°ΠΌ ΡΠ°Π·ΡΡΠ²Π½ΡΡ
Π½Π°ΡΡΡΠ΅Π½ΠΈΠΉ, ΠΈΡ
ΡΠ·Π»Π°ΠΌ ΠΈ ΡΡΠ°ΡΡΠΊΠ°ΠΌ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ°ΠΌΠΈ ΠΊΠΈΠΌΠ±Π΅ΡΠ»ΠΈΡΠΎΠ²ΡΡ
ΡΠ΅Π». ΠΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π³ΠΈΠ΄ΡΠΎΠ³Π΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ Π³Π΅ΠΎΠ»ΠΎΠ³ΠΎ-ΡΡΡΡΠΊΡΡΡΠ½ΡΡ
Π΄Π°Π½Π½ΡΡ
ΠΌΠΎΠΆΠ΅Ρ ΡΠ»ΡΠΆΠΈΡΡ ΠΎΡΠ½ΠΎΠ²ΠΎΠΉ Π΄Π»Ρ ΠΏΡΠΎΠ³Π½ΠΎΠ·Π½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΡΠ°ΡΡΠΊΠΎΠ² ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΡΡ
Π²ΠΎΠ΄ΠΎΠΏΡΠΈΡΠΎΠΊΠΎΠ² Π² Π³Π»ΡΠ±ΠΎΠΊΠΈΡ
Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Ρ
, Π²ΠΎΠ²Π»Π΅ΠΊΠ°Π΅ΠΌΡΡ
Π² ΡΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡΠΈΡ
The BM@N spectrometer at the NICA accelerator complex
BM@N (Baryonic Matter at Nuclotron) is the first experiment operating and
taking data at the Nuclotron/NICA ion-accelerating complex.The aim of the BM@N
experiment is to study interactions of relativistic heavy-ion beams with fixed
targets. We present a technical description of the BM@N spectrometer including
all its subsystems.Comment: 34 pages, 47 figures, 6 table
- β¦