25 research outputs found
Reactive Ion Exchange Processes of Nonferrous Metal Leaching and Dispersion Material Synthesis
Π’Π΅ΠΊΡΡ ΡΡΠ°ΡΡΠΈ Π½Π΅ ΠΏΡΠ±Π»ΠΈΠΊΡΠ΅ΡΡΡ Π² ΠΎΡΠΊΡΡΡΠΎΠΌ Π΄ΠΎΡΡΡΠΏΠ΅ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠΎΠΉ ΠΆΡΡΠ½Π°Π»Π°
Reactive Ion Exchange Processes of Nonferrous Metal Leaching and Dispersion Material Synthesis
Π’Π΅ΠΊΡΡ ΡΡΠ°ΡΡΠΈ Π½Π΅ ΠΏΡΠ±Π»ΠΈΠΊΡΠ΅ΡΡΡ Π² ΠΎΡΠΊΡΡΡΠΎΠΌ Π΄ΠΎΡΡΡΠΏΠ΅ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠΎΠΉ ΠΆΡΡΠ½Π°Π»Π°
Synthesis of gelatin-stabilized concentrated hydrosols of copper nanoparticles
Π ΡΠ°Π±ΠΎΡΠ΅ ΠΈΠ·ΡΡΠ΅Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΠΉ (ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ ΡΡΠ»ΡΡΠ°ΡΠ° ΠΌΠ΅Π΄ΠΈ, Π³ΠΈΠ΄ΡΠ°Π·ΠΈΠ½Π°, ΠΆΠ΅Π»Π°ΡΠΈΠ½Π°, ΡΠ²Π΅ΡΠ΄ΠΎΡΡΠΈ ΠΆΠ΅Π»Π°ΡΠΈΠ½Π° ΠΏΠΎ ΠΠ»ΡΠΌΡ, ΡΠ ΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΡΠΈΠ½ΡΠ΅Π·Π°) Π½Π° ΠΏΡΠΎΡΠ΅ΡΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ ΠΌΠ΅Π΄ΠΈ ΠΏΡΠΈ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠΈ ΡΡΠ»ΡΡΠ°ΡΠ° ΠΌΠ΅Π΄ΠΈ (II) ΡΠ°ΡΡΠ²ΠΎΡΠΎΠΌ Π³ΠΈΠ΄ΡΠ°Π·ΠΈΠ½Π°. ΠΠ°ΠΉΠ΄Π΅Π½Ρ ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΡΡΠΎΠΉΡΠΈΠ²ΡΡ
ΠΊ ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΡ ΠΈ Π°Π³ΡΠ΅Π³Π°ΡΠΈΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
(0,4 Π) Π³ΠΈΠ΄ΡΠΎΠ·ΠΎΠ»Π΅ΠΉ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠ΅Π΄ΠΈ. ΠΠΎ Π΄Π°Π½Π½ΡΠΌ ΠΠΠ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π³ΠΈΠ΄ΡΠΎΠ·ΠΎΠ»ΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°Ρ ΡΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡΡ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠ΅Π΄ΠΈ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠΌ 30-60 Π½ΠΌ, ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ 2-3 Π½ΠΌ ΡΠ»ΠΎΠ΅ΠΌ ΠΆΠ΅Π»Π°ΡΠΈΠ½Π°
Synthesis of gelatin-stabilized concentrated hydrosols of copper nanoparticles
Π ΡΠ°Π±ΠΎΡΠ΅ ΠΈΠ·ΡΡΠ΅Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΠΉ (ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ ΡΡΠ»ΡΡΠ°ΡΠ° ΠΌΠ΅Π΄ΠΈ, Π³ΠΈΠ΄ΡΠ°Π·ΠΈΠ½Π°, ΠΆΠ΅Π»Π°ΡΠΈΠ½Π°, ΡΠ²Π΅ΡΠ΄ΠΎΡΡΠΈ ΠΆΠ΅Π»Π°ΡΠΈΠ½Π° ΠΏΠΎ ΠΠ»ΡΠΌΡ, ΡΠ ΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΡΠΈΠ½ΡΠ΅Π·Π°) Π½Π° ΠΏΡΠΎΡΠ΅ΡΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ ΠΌΠ΅Π΄ΠΈ ΠΏΡΠΈ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠΈ ΡΡΠ»ΡΡΠ°ΡΠ° ΠΌΠ΅Π΄ΠΈ (II) ΡΠ°ΡΡΠ²ΠΎΡΠΎΠΌ Π³ΠΈΠ΄ΡΠ°Π·ΠΈΠ½Π°. ΠΠ°ΠΉΠ΄Π΅Π½Ρ ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΡΡΠΎΠΉΡΠΈΠ²ΡΡ
ΠΊ ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΡ ΠΈ Π°Π³ΡΠ΅Π³Π°ΡΠΈΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
(0,4 Π) Π³ΠΈΠ΄ΡΠΎΠ·ΠΎΠ»Π΅ΠΉ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠ΅Π΄ΠΈ. ΠΠΎ Π΄Π°Π½Π½ΡΠΌ ΠΠΠ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π³ΠΈΠ΄ΡΠΎΠ·ΠΎΠ»ΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°Ρ ΡΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡΡ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠ΅Π΄ΠΈ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠΌ 30-60 Π½ΠΌ, ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ 2-3 Π½ΠΌ ΡΠ»ΠΎΠ΅ΠΌ ΠΆΠ΅Π»Π°ΡΠΈΠ½Π°
Effect of Polysaccharide Additions on the Anion-Exchange Deposition of Cobalt Ferrite Nanoparticles
Π’Π΅ΠΊΡΡ ΡΡΠ°ΡΡΠΈ Π½Π΅ ΠΏΡΠ±Π»ΠΈΠΊΡΠ΅ΡΡΡ Π² ΠΎΡΠΊΡΡΡΠΎΠΌ Π΄ΠΎΡΡΡΠΏΠ΅ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠΎΠΉ ΠΆΡΡΠ½Π°Π»Π°.A facile and rapid method easily reproducible in ordinary laboratory settings is proposed for preparing nanosized cobalt ferrite powders, where the precipitate used is a strongly basic anion exchange resin in the OH form. The effects caused by additions of polysaccharides having various chain natures and various molar weights on the composition, yield, and particle size of the deposition product are studied. Suggested mechanisms underlying these effects are studied. This method makes it possible to appreciably reduce the precursor annealing temperature compared to that in the state-of-art methods for preparing similar oxide systems due to the formation of highly reactive precursors. Optimal conditions are found to prepare stoichiometric precursors such that, once annealed at 600Β°C, would form a CoFe2O4 pure phase with particle sizes of 10β20 nm. The stability of hydrosols of the thus-prepared cobalt ferrite nanoparticles is studied by dynamic and electrophoretic light scattering. The prepared material is found to be useful for the design of magnetic coreβshell hybrid nanostructures. Β© 2020, Pleiades Publishing, Ltd
ANION-EXCHANGE SYNTHESIS OF COPPER FERRITE POWDERS
Amethod is proposed for synthesizing copper ferrite, consisting in anion-exchange precipitation of copper (II)
and iron (III) from solutions of their salts in the presence of tartrate ions as complexing agents followed by calcination
of the obtained precipitate. The precursors and the products of their heat-treatment or studied by
means of chemical, complex thermal and x-ray phase analyses, IR spectroscopy, scanning electron microscopy,
and x-ray spectral microanalysis; the magnetic properties of the obtained samples were also studied. It
was determined that a ferromagnetically ordered phase is present in the synthesized materials and their magnetic
properties are close to those of bulk CuFe2O4
ANION-EXCHANGE SYNTHESIS OF YTTRIUM-ALUMINUM GARNET POWDERS
Π’Π΅ΠΊΡΡ ΡΡΠ°ΡΡΠΈ Π½Π΅ ΠΏΡΠ±Π»ΠΈΠΊΡΠ΅ΡΡΡ Π² ΠΎΡΠΊΡΡΡΠΎΠΌ Π΄ΠΎΡΡΡΠΏΠ΅ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠΎΠΉ ΠΆΡΡΠ½Π°Π»Π°
On the nature of citrate-derived surface species on Ag nanoparticles: insights from X-ray photoelectron spectroscopy
Citrate is an important stabilizing, reducing, and complexing reagent in the wet chemical
synthesis of nanoparticles of silver and other metals, however, the exact nature of adsorbates,
and its mechanism of action are still uncertain. Here, we applied X-ray photoelectron
spectroscopy, soft X-ray absorption near-edge spectroscopy, and other techniques in order to
determine the surface composition and to specify the citrate-related species at Ag nanoparticles
3
immobilized from the dense hydrosol prepared using room-temperature reduction of aqueous
Ag+ ions with ferrous ions and citrate as stabilizer (Carey Lea method). It was found that,
contrary to the common view, the species adsorbed on the Ag nanoparticles are, in large part,
products of citrate decomposition comprising an alcohol group and one or two carboxylate
bound to the surface Ag, and minor unbound carboxylate group; these may also be mixtures of
citrate with lower molecular weight anions. No ketone groups were specified, and very minor
surface Ag(I) and Fe (mainly, ferric oxyhydroxides) species were detected. Moreover, the
adsorbates were different at AgNPs having various size and shape. The relation between the
capping and the particle growth, colloidal stability of the high-concentration sol and properties of
AgNPs is briefly considered