1,471 research outputs found
Metallic transfer between metals in sliding contact examined by auger emission spectroscopy
Metallic transfer between polycrystalline metals in sliding contact was examined. Hemispherical riders of iron, nickel, and cobalt were slid on tungsten, tantalum, niobium, and molybdenum disks in ultrahigh vacuum. Auger emission spectroscopy was used to monitor the elemental composition of the disk surfaces. Iron, nickel, and cobalt transferred to tungsten, whereas only cobalt transferred to tantalum, niobium, and molybdenum. The results of this investigation are discussed in terms of the cohesive energy and strain hardening characteristics of the specimen materials
Shear strength of metal - SiO2 contacts
The strength of the bond between metals and SiO2 was studied by measuring the static coefficient of friction of metals contacting alpha-quartz in ultrahigh vacuum. It was found that copper with either chemisorbed oxygen, nitrogen, or sulphur exhibited higher contact strength on stoichiometric SiO2 than did clean copper. Since the surface density of states induced by these species on copper is similar, it appears that the strength of the interfacial bond can be related to the density of states on the metal surface
Effect of electronic structure of the diamond surface on the strength of the diamond-metal interface
A diamond surface undergoes a transformation in its electronic structure by a vacuum anneal at approximately 900 C. The polished surface has no electronic states in the band gap, whereas the annealed surface has both occupied and unoccupied states in the and gap and exhibits some electrical conductivity. The effect of this transformation on the strength of the diamond metal interface was investigated by measuring the static friction force of an atomically clean meta sphere on a diamond flat in ultrahigh vacuum. It was found that low friction (weak bonding) is associated with the diamond surface devoid of gap states whereas high friction (strong bonding) is associated with the diamond surface with gap states. Exposure of the annealed surface to excited hydrogen also leads to weak bonding. The interfacial bond is discussed in terms of interaction of the metal conduction band electrons with the band gap states on the diamond surface. Effects of surface electrical conductivity on the interfacial bond are also be considered
The optical analysis of photoemission
Optical analysis on thin film photoemissio
Matrix effects in ion-induced emission as observed in Ne collisions with Cu-Mg and Cu-Al alloys
Ion induced Auger electron emission is used to study the surfaces of Al, Mg, Cu - 10 at. % Al, Cu - 19.6 at. % Al, and Cu - 7.4 at. % Mg. A neon (Ne) ion beam whose energy is varied from 0.5 to 3 keV is directed at the surface. Excitation of the lighter Ne occurs by the promotion mechanism of Barat and Lichten in asymmetric collisions with Al or Mg atoms. Two principal Auger peaks are observed in the Ne spectrum: one at 22 eV and one at 25 eV. Strong matrix effects are observed in the alloys as a function of energy in which the population of the second peak is greatly enhanced relative to the first over the pure materials. For the pure material over this energy range this ratio is 1.0. For the alloys it can rise to the electronic structure of alloys and to other surface tools such as secondary ion mass spectroscopy
Use of high L.E.T. radiation to improve adhesion of metals to polytetrafluoroethylene
MgK alpha X-rays (1254 eV) and 2 keV electrons irradiate the surface of polytetrafluoro ethylene (PTFE). The damage is confined to a few tenths of a micron below the surface, and the doses exceed 10 to the eight power rad. X-ray Photoelectron Spectroscopy (XPS) of the irradiated surfaces and mass spectroscopy of the gaseous products of irradiation indicate that the damaged layer is crosslinked or branched PTFE. After either type of irradiation, the surface has enhanced affinity for metals and a lower contact angle with hexadecane. Tape pull tests show that evaporated Ni and Au films adhere better to the irradiated surface. XPS shows the Ni interacts chemically with PTFE forming NiF2 and possibly NiC. However, the gold adhesion and contact angle results indicate that the interaction is, at least in part, chemically nonspecific. Decreased contact angles on FEP Teflon crystallized against gold were attributed to either the presence of a polar oxygen layer or increased physical forces due to greater density. In the case of irradiated PTFE, no oxygen on the surface was observed. The crosslinked structure might, however, have a greater density, thus accounting for the observed increase in adhesion and wettability
Thermal desorption study of physical forces at the PTFE surface
Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possibile role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage
Transfer of molybdenum disulfide to various metals
Sliding friction experiments were conducted with molybdenum disulfide single crystals in contact with sputter cleaned surfaces of copper, nickel, gold, and 304 stainless steel. Transfer of the molybdenum disulfide to the metals was monitored with Auger electron spectroscopy. Results of the investigation indicate molybdenum disulfide transfers to all clean metal surfaces after a single pass over the metal surface with film thickness observed to increase with repeated passes over the same surfaces. Large particle transfer occurs when the orientation of the crystallites is other than basal. This is frequently accompanied by abrasion of the metal. Adhesion of molybdenum disulfide films occurred readily to copper and nickel, less readily to 304 stainless steel, and even less effectively to the gold, which indicates a chemical effect
Auger analysis of a fiber/matrix interface in a ceramic matrix composite
Auger electron spectroscopy (AES) depth profiling was used to characterize the fiber/matrix interface of an SiC fiber, reaction bonded Si3N4 matrix composite. Depth profiles of the as received double coated fiber revealed concentration oscillations which disappeared after annealing the fiber in the environment used to fabricate the composite. After the composite was fractured, the Auger depth profiles showed that failure occurred in neither the Beta-SiC fiber body nor in the Si3N4 matrix but, concurrently, at the fiber coating/matrix interface and within the fiber coating itself
Tribological properties of Ag/Ti films on Al2O3 ceramic substrates
Ag solid lubricant films, with a thin Ti interlayer for enhanced adhesion, were sputter deposited on Al2O3 substrate disks to reduce friction and wear. The dual Ag/Ti films were tested at room temperature in a pin-on-disk tribometer sliding against bare, uncoated Al2O3 pins under a 4.9 N load at a sliding velocity of 1 m/s. The Ag/Ti films reduced the friction coefficient by 50 percent to about 0.41 compared to unlubricated baseline specimens. Pin wear was reduced by a factor of 140 and disk wear was reduced by a factor of 2.5 compared to the baseline. These films retain their good tribological properties including adhesion after heat treatments at 850 C and thus may be able to lubricate over a wide temperature range. This lubrication technique is applicable to space lubrication, advanced heat engines, and advanced transportation systems
- …