46 research outputs found

    Influence of growth rate on the epitaxial orientation and crystalline quality of CeO2 thin films grown on Al2O3(0001)

    Get PDF
    Growth rate-induced epitaxial orientations and crystalline quality of CeO2 thin films grown on Al2O3(0001) by oxygen plasma-assisted molecular beam epitaxy were studied using in situ and ex situ characterization techniques. CeO2 grows as three-dimensional (3D) islands and two-dimensional layers at growth rates of 1-7 angstrom/min and \u3e = 9 angstrom/min, respectively. The formation of epitaxial CeO2(100) and CeO2(111) thin films occurs at growth rates of 1 angstrom/min and \u3e = 9 angstrom/min, respectively. Glancing-incidence x-ray diffraction measurements have shown that the films grown at intermediate growth rates (2-7 angstrom/min) consist of polycrystalline CeO2 along with CeO2(100). The thin film grown at 1 angstrom/min exhibits six in-plane domains, characteristic of well-aligned CeO2(100) crystallites. The content of the poorly aligned CeO2(100) crystallites increases with increasing growth rate from 2 to 7 angstrom/min, and three out of six in-plane domains gradually decrease and eventually disappear, as confirmed by XRD pole figures. At growth rates \u3e = 9 angstrom/min, CeO2(111) film with single in-plane domain was identified. The formation of CeO2(100) 3D islands at growth rates of 1-7 angstrom/min is a kinetically driven process unlike at growth rates \u3e = 9 angstrom/min which result in an energetically and thermodynamically more stable CeO2(111) surface

    Aqueous Medium Induced Optical Transitions In Cerium Oxide Nanoparticles

    No full text
    Experimental and theoretical investigations were performed to investigate the effect of water on optical properties of nanoceria as a function of Ce3+ concentration. Theoretical studies based on density functional plane-wave calculations reveal that the indirect optical transitions in bare ceria nanoparticles are red-shifted with an increase in the concentration of Ce3+. However, ceria nanoparticles model with adsorbed water molecules show a blue shift in the indirect optical spectra under identical conditions. Direct optical transitions are almost independent of Ce3+ concentration but show a pronounced blue shift in the aqueous environment relative to the bare nanoparticles. The theoretical study is consistent with our experimental observation in difference of shift behaviour in bare and aqueous suspended ceria nanoparticles. This change from red- to blue-shift in indirect optical transitions is associated with the polarization effect of water molecules on f-electron states. This journal i

    Self-Assembly of Cerium Oxide Nanostructures in Ice Molds

    No full text
    The formation of nanorods, driven by the physicochemical phenomena during the freezing and after the aging of frozen ceria nanoparticle suspensions, is reported. During freezing of a dilute aqueous solution of CeO2 nanocrystals, some nuclei remain in solution while others are trapped inside micro- and nanometer voids formed within the growing ice front. Over time (2–3 weeks) the particles trapped within the nanometer-wide voids in the ice combine by an oriented attachment process to form ceria nanorods. The experimental observations are consistent with molecular dynamics simulations of particle aggregation in constrained environments. These observations suggest a possible strategy for the templated formation of nanostructures through self-assembly by exploiting natural phenomena, such as voids formed during freezing of water. This research suggests a very simple, green chemical route to guide the formation of one- and three-dimensional self-assembled nanostructures

    Surface science analysis of GaAs photocathodes following sustained electron beam delivery

    No full text
    Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power free electron lasers (FEL). Photocathode quantum efficiency degradation is due to residual gases in the electron source vacuum system being ionized and accelerated back to the photocathode. These investigations are a first attempt to characterize the nature of the photocathode degradation, and employ multiple surface and bulk analysis techniques to investigate damage mechanisms including sputtering of the Cs-oxidant surface monolayer, other surface chemistry effects, and ion implantation. Surface and bulk analysis studies were conducted on two GaAs photocathodes, which were removed from the JLab FEL DC photoemission gun after delivering electron beam, and two control samples. The analysis techniques include helium ion microscopy, Rutherford backscattering spectrometry (RBS), atomic force microscopy, and secondary ion mass spectrometry (SIMS). In addition, two high-polarization strained superlattice GaAs photocathode samples, one removed from the continuous electron beam accelerator facility (CEBAF) photoinjector and one unused, were also analyzed using transmission electron microscopy (TEM) and SIMS. It was found that heat cleaning the FEL GaAs wafer introduces surface roughness, which seems to be reduced by prolonged use. The bulk GaAs samples retained a fairly well organized crystalline structure after delivering beam but show evidence of Cs depletion on the surface. Within the precision of the SIMS and RBS measurements, the data showed no indication of hydrogen implantation or lattice damage from ion back bombardment in the bulk GaAs wafers. In contrast, SIMS and TEM measurements of the strained superlattice photocathode show clear crystal damage in the wafer from ion back bombardment

    Mapping Nanostructure: A Systematic Enumeration of Nanomaterials by Assembling Nanobuilding Blocks at Crystallographic Positions

    No full text
    Nanomaterials synthesized from nanobuilding blocks promise size-dependent properties, associated with individual nanoparticles, together with collective properties of ordered arrays. However, one cannot position nanoparticles at specific locations; rather innovative ways of coaxing these particles to self-assemble must be devised. Conversely, model nanoparticles can be placed in any desired position, which enables a systematic enumeration of nanostructure from model nanobuilding blocks. This is desirable because a list of chemically feasible hypothetical structures will help guide the design of strategies leading to their synthesis. Moreover, the models can help characterize nanostructure, calculate (predict) properties, or simulate processes. Here, we start to formulate and use a simulation strategy to generate atomistic models of nanomaterials, which can, potentially, be synthesized from nanobuilding block precursors. Clearly, this represents a formidable task because the number of ways nanoparticles can be arranged into a superlattice is infinite. Nevertheless, numerical tools are available to help build nanoparticle arrays in a systematic way. Here, we exploit the “rules of crystallography” and position nanoparticles, rather than atoms, at crystallographic sites. Specifically, we explore nanoparticle arrays with cubic, tetragonal, and hexagonal symmetries together with primitive, face centered cubic and body centered cubic nanoparticle “packing”. We also explore binary nanoparticle superlattices. The resulting nanomaterials, spanning CeO2, Ti-doped CeO2, ZnO, ZnS, MgO, CaO, SrO, and BaO, comprise framework architectures, with cavities interconnected by channels traversing (zero), one, two and three dimensions. The final, fully atomistic models comprise three hierarchical levels of structural complexity: crystal structure, microstructure (i.e., grain boundaries, dislocations), and superlattice structure
    corecore