18 research outputs found

    Мicrocontroller based motor protective device

    No full text
    UK: Розглянуто мікроконтролерний пристрій для безперервного діагностування режиму роботи асинхронного електродвигуна у процесі експлуатації. Наведено можливі варіанти модернізації пристрою для синхронізації роботи декількох блоків захисту у складі потокової лінії. EN: The microcontroller device for motor continuous diagnostics was considered. They are brought possible variants to device modernization for synchronizing several blocks of protection in the production line

    Paired Patterns in Logical Analysis of Data for Decision Support in Recognition

    No full text
    Logical analysis of data (LAD), an approach to data analysis based on Boolean functions, combinatorics, and optimization, can be considered one of the methods of interpretable machine learning. A feature of LAD is that, among many patterns, different types of patterns can be identified, for example, prime, strong, spanned, and maximum. This paper proposes a decision-support approach to recognition by sharing different types of patterns to improve the quality of recognition in terms of accuracy, interpretability, and validity. An algorithm was developed to search for pairs of strong patterns (prime and spanned) with the same coverage as the training sample, having the smallest (for the prime pattern) and the largest (for the spanned pattern) number of conditions. The proposed approach leads to a decrease in the number of unrecognized observations (compared with the use of spanned patterns only) by 1.5–2 times (experimental results), to some reduction in recognition errors (compared with the use of prime patterns only) of approximately 1% (depending on the dataset) and makes it possible to assess in more detail the level of confidence of the recognition result due to a refined decision-making scheme that uses the information about the number and type of patterns covering the observation

    Paired Patterns in Logical Analysis of Data for Decision Support in Recognition

    No full text
    Logical analysis of data (LAD), an approach to data analysis based on Boolean functions, combinatorics, and optimization, can be considered one of the methods of interpretable machine learning. A feature of LAD is that, among many patterns, different types of patterns can be identified, for example, prime, strong, spanned, and maximum. This paper proposes a decision-support approach to recognition by sharing different types of patterns to improve the quality of recognition in terms of accuracy, interpretability, and validity. An algorithm was developed to search for pairs of strong patterns (prime and spanned) with the same coverage as the training sample, having the smallest (for the prime pattern) and the largest (for the spanned pattern) number of conditions. The proposed approach leads to a decrease in the number of unrecognized observations (compared with the use of spanned patterns only) by 1.5–2 times (experimental results), to some reduction in recognition errors (compared with the use of prime patterns only) of approximately 1% (depending on the dataset) and makes it possible to assess in more detail the level of confidence of the recognition result due to a refined decision-making scheme that uses the information about the number and type of patterns covering the observation

    Experimental Study of Oil Non-Condensable Gas Pyrolysis in a Stirred-Tank Reactor for Catalysis of Hydrogen and Hydrogen-Containing Mixtures Production

    No full text
    The present study is focused on improving the technology for deep oil sludge processing by pyrolysis methods, considered to be the most promising technology for their environmentally friendly utilization, in which a significant yield of fuel products is expected. The technology developed by the authors of this study is a two-stage process. The first stage, pyrolysis of oil sludge, was investigated in previous papers. A significant yield of non-condensable gases was obtained. This paper presents a study of the second stage of complex deep processing technology—pyrolysis of non-condensable gases (purified propane) using a stirrer with the help of the developed experimental setup. The expected benefit of using the stirrer is improved heat transfer due to circumferential and radial-axial circulation of the gas flow. The effect of a stirrer on the yield of final target decomposition products—H2-containing mixtures and H2 generated during non-catalytic (medium-temperature) and catalytic pyrolysis of non-condensable gases obtained by pyrolysis of oil sludge are estimated. Ni catalyst was used for catalytic pyrolysis. The study shows that the application of the stirrer leads to increasing in H2-containing mixtures and H2 concentrations. In particular, during the whole reaction time (10 h), the average H2 concentration in pyrolysis gas during catalytic pyrolysis increased by ~5.3%. In this case, the optimum reaction time to produce H2 was 4 h. The peak H2 concentration in the pyrolysis gas at reaction temperature 590 ± 10 °C was: 66.5 vol. % with the stirrer versus 62 vol. % without the stirrer with an error of ±0.4 %. A further increase in reaction time is cost-effective in order to obtain H2-containing mixtures

    Prediction of Critical Filling of a Storage Area Network by Machine Learning Methods

    No full text
    The introduction of digital technologies into the activities of companies is based on software and hardware systems, which must function reliably and without interruption. The forecasting of the completion of storage area networks (SAN) is an essential tool for ensuring the smooth operation of such systems. The aim of this study is to develop a system of the modelling and simulation of the further loading of SAN on previously observed load measurements. The system is based on machine learning applied to the load prediction problem. Its novelty relates to the method used for forming input attributes to solve the machine learning problem. The proposed method is based on the aggregation of data on observed loading measurements and the formalization of the problem in the form of a regression analysis problem. The artificial dataset, synthesized stochastically according to the given parameter intervals and simulating SAN behavior, allowed for more extensive experimentation. The most effective algorithm is CatBoost (gradient boosting on decision trees), which surpasses other regression analysis algorithms in terms of R2 scores and MAE. The selection of the most significant features allows for the simplification of the prediction model with virtually no loss of accuracy, thereby reducing the number of confessions used. The experiments show that the proposed prediction model is adequate to the situation under consideration and allows for the prediction of the SAN load for the planning period under review with an R2 value greater than 0.9. The model has been validated on a series of real data on SAN

    Experimental Study of Oil Non-Condensable Gas Pyrolysis in a Stirred-Tank Reactor for Catalysis of Hydrogen and Hydrogen-Containing Mixtures Production

    No full text
    The present study is focused on improving the technology for deep oil sludge processing by pyrolysis methods, considered to be the most promising technology for their environmentally friendly utilization, in which a significant yield of fuel products is expected. The technology developed by the authors of this study is a two-stage process. The first stage, pyrolysis of oil sludge, was investigated in previous papers. A significant yield of non-condensable gases was obtained. This paper presents a study of the second stage of complex deep processing technology—pyrolysis of non-condensable gases (purified propane) using a stirrer with the help of the developed experimental setup. The expected benefit of using the stirrer is improved heat transfer due to circumferential and radial-axial circulation of the gas flow. The effect of a stirrer on the yield of final target decomposition products—H2-containing mixtures and H2 generated during non-catalytic (medium-temperature) and catalytic pyrolysis of non-condensable gases obtained by pyrolysis of oil sludge are estimated. Ni catalyst was used for catalytic pyrolysis. The study shows that the application of the stirrer leads to increasing in H2-containing mixtures and H2 concentrations. In particular, during the whole reaction time (10 h), the average H2 concentration in pyrolysis gas during catalytic pyrolysis increased by ~5.3%. In this case, the optimum reaction time to produce H2 was 4 h. The peak H2 concentration in the pyrolysis gas at reaction temperature 590 ± 10 °C was: 66.5 vol. % with the stirrer versus 62 vol. % without the stirrer with an error of ±0.4 %. A further increase in reaction time is cost-effective in order to obtain H2-containing mixtures

    Biofuel Technologies and Petroleum Industry: Synergy of Sustainable Development for the Eastern Siberian Arctic

    No full text
    This article is a compilation of interdisciplinary studies aimed at ensuring the environmental, political, and economic sustainability of oil and gas-producing countries with a focus on areas with many years of permafrost. One of the main concepts adopted in this research was the desire to show that confronting various energy lobbies is not mandatory and that it is necessary to find compromises by finding and introducing innovative technologies for integrated development for the benefit of society, industry, and the state. This is particularly relevant due to the increasing share of hard-to-recover hydrocarbon reserves, widely represented in the fields of the Eastern Siberian Arctic, and because Russia is the leader in flare emissions. We thus present the relevance of using these gases as industrial waste while reducing the carbon footprint. The technology of biofuel production based on the use of supercritical liquid extraction in a well extractor is presented as a result of the development of the presented experimental devices representing the investigation of the processes of extraction in wells and reactors for the distillation of hydrocarbons from heavy oil components. The obtained yield of the desired product (hydrogen) of the thermocatalytic pyrolysis of the test extract was in the range of 44 to 118 L/h, depending on the catalyst. This information can help inform the direction of future ecological engineering activities in the Eastern Siberian Arctic region
    corecore