11 research outputs found

    Light emission and spin-polarised hole injection in InAs/GaAs quantum dot heterostructures with Schottky contact

    Get PDF
    EPL draftWe demonstrate the feasibility to obtain electroluminescence (EL), up to room temperature, from InGaAs self-assembled quantum dots (QDs) included in a forward-biased Schottky diode. Moreover, using a ferromagnet (FM) as the contact layer, sizable circular polarization of the EL emission in the presence of an external magnetic eld is obtained. A resonant behav- ior of the degree of circular polarization (P) as a function of applied voltage (V ), for a given value of magnetic eld, is observed. We explain our ndings using a model including tunneling of (spin-polarised) holes through the metal-semiconductor interface, transport in the near surface region of the heterostructure and out-of-equilibrium statistics of the injected carriers occupying the available states in the QD heterostructure. In particular, the resonant P(V ) dependence is related to the splitting of the qusi-Fermi level for two spin orientations in the FM.FCT, Portugal (project POCI/FIS/58524/2004), the RFBR, Russia (grant 10-02- 00501), MEC (grants MAT2008-01555, QOIT-CSD2006- 00019) and CAM (S-2009/ESP-1503) (Spain)

    Features of electron gas in InAs nanowires imposed by interplay between nanowire geometry, doping and surface states

    No full text
    We present a study of electron gas properties in InAs nanowires determined by interaction between nanowire geometry, doping and surface states. The electron gas density and space distribution are calculated via self-consistent solution of coupled Schroedinger and Poisson equations in the nanowires with a hexagonal cross-section. We show that the density of surface states and the nanowire width define the spatial distribution of the electrons. Three configurations can be distinguished, namely the electrons are localized in the center of the wire, or they are arranged in a uniform tubular distribution, or finally in a tubular distribution with additional electron accumulation at the corners of the nanowire. The latter one is dominating for most experimentally obtained nanowires. N-type doping partly suppresses electron accumulation at the nanowire corners. The electron density calculated for both, various nanowire widths and different positions of the Fermi level at the nanowire surface, is compared with the experimental data for intrinsic InAs nanowires. Suitable agreement is obtained by assuming a Fermi level pinning at 60 to 100 meV above the conduction band edge, leading to a tubular electron distribution with accumulation along the corners of the nanowire

    Synthesis and Preclinical Evaluation of Small-Molecule Prostate-Specific Membrane Antigen-Targeted Abiraterone Conjugate

    No full text
    Prostate cancer is the second most common type of cancer among men. The main method of its treatment is androgen deprivation therapy, which has a wide range of side effects. One of the solutions to this challenge is the targeted delivery of drugs to prostate cancer cells. In this study, we performed the synthesis of a novel small-molecule PSMA-targeted conjugate based on abiraterone. Cytotoxicity, the induction of intracellular reactive oxygen species, and P450-cytochrome species inhibition were investigated for this conjugate PSMA-abiraterone. The conjugate demonstrated a preferential effect on prostate tumor cells, remaining inactive at up to 100 µM in human fibroblast cells. In addition, it revealed preferential efficacy, specifically on PSMA-expressing lines with a 65% tumor growth inhibition level on 22Rv1 (PSMA+) xenografts after 14-fold oral administration of PSMA-Abi at a single dose of 500 mg/kg (7.0 g/kg total dose) was observed. This compound showed significantly reduced acute toxicity with comparable efficacy compared to AbiAc

    Synthesis and Preclinical Evaluation of Small-Molecule Prostate-Specific Membrane Antigen-Targeted Abiraterone Conjugate

    No full text
    Prostate cancer is the second most common type of cancer among men. The main method of its treatment is androgen deprivation therapy, which has a wide range of side effects. One of the solutions to this challenge is the targeted delivery of drugs to prostate cancer cells. In this study, we performed the synthesis of a novel small-molecule PSMA-targeted conjugate based on abiraterone. Cytotoxicity, the induction of intracellular reactive oxygen species, and P450-cytochrome species inhibition were investigated for this conjugate PSMA-abiraterone. The conjugate demonstrated a preferential effect on prostate tumor cells, remaining inactive at up to 100 µM in human fibroblast cells. In addition, it revealed preferential efficacy, specifically on PSMA-expressing lines with a 65% tumor growth inhibition level on 22Rv1 (PSMA+) xenografts after 14-fold oral administration of PSMA-Abi at a single dose of 500 mg/kg (7.0 g/kg total dose) was observed. This compound showed significantly reduced acute toxicity with comparable efficacy compared to AbiAc

    Benchmark Database Containing Binary-System-High-Quality-Certified Data for Cross-Comparing Thermodynamic Models and Assessing Their Accuracy

    No full text
    corecore