3 research outputs found
Research of Regenerative Braking Strategy for Electric Vehicles
In the context of global energy instability caused by the transformation of global demand for energy and energy resources, one of the most important areas in the automotive industry is the development of electric vehicles. Serial production of high-tech electric vehicles with a long range contributes to the stabilization of the energy market and the sustainable development of the whole fuel-energy sector. To evaluate the possibility of optimizing the electric vehicles energy consumption, various regenerative braking strategies are discussed in the article based on the Nissan Leaf electric vehicle, which simulation model includes submodules of the traction electric motor, hybrid braking system, traction rechargeable battery and tires. In order to test the adequacy of the simulation model to reproduce the relationship between the operating parameters of electric vehicles various systems and evaluate their ability to regenerate energy during braking the simulation results were compared with the actual experimental data published by the Lab Avt research laboratory (USA). The relative error of the mathematical modeling results of the braking energy regeneration processes is 4.5 %, which indicates the adequacy of the electric vehicle simulation model and the possibility of its using as a base for research and comparison of the energy efficiency of various regenerative braking strategies. As the results of experiments have shown, the usage of the proposed control strategy of the regenerative braking maximum force allows increasing 2.14 times the energy recharging traffic to the battery as compared with the basic control strategy of fixed coefficient braking forces distribution with an increase in braking distance by 10 m. An alternative control strategy of regenerative braking optimal efficiency as compared to the basic control strategy provides a reduction in braking distance by 13.2 % at increasing by 84.4 % the amount of energy generated by the electric motor for recharging the batteries. The carried out investigations confirm the available significant potential for improving the efficiency of the electric vehicles usage by developing the control strategy and algorithms of the braking energy regeneration
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΡΠ°ΡΠ΅Π³ΠΈΠΈ ΡΠ΅ΠΊΡΠΏΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ
In the context of global energy instability caused by the transformation of global demand for energy and energy resources, one of the most important areas in the automotive industry is the development of electric vehicles. Serial production of high-tech electric vehicles with a long range contributes to the stabilization of the energy market and the sustainable development of the whole fuel-energy sector. To evaluate the possibility of optimizing the electric vehicles energy consumption, various regenerative braking strategies are discussed in the article based on the Nissan Leaf electric vehicle, which simulation model includes submodules of the traction electric motor, hybrid braking system, traction rechargeable battery and tires. In order to test the adequacy of the simulation model to reproduce the relationship between the operating parameters of electric vehicles various systems and evaluate their ability to regenerate energy during braking the simulation results were compared with the actual experimental data published by the Lab Avt research laboratory (USA). The relative error of the mathematical modeling results of the braking energy regeneration processes is 4.5 %, which indicates the adequacy of the electric vehicle simulation model and the possibility of its using as a base for research and comparison of the energy efficiency of various regenerative braking strategies. As the results of experiments have shown, the usage of the proposed control strategy of the regenerative braking maximum force allows increasing 2.14 times the energy recharging traffic to the battery as compared with the basic control strategy of fixed coefficient braking forces distribution with an increase in braking distance by 10Β m. An alternative control strategy of regenerative braking optimal efficiency as compared to the basic control strategy provides a reduction in braking distance by 13.2 % at increasing by 84.4 % the amount of energy generated by the electric motor for recharging the batteries. The carried out investigations confirm the available significant potential for improving the efficiency of the electric vehicles usage by developing the control strategy and algorithms of the braking energy regeneration.Π ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π΅ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ, Π²ΡΠ·Π²Π°Π½Π½ΠΎΠΉ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΈΠ΅ΠΉ Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΏΡΠΎΡΠ° Π½Π° ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΈ ΡΠ½Π΅ΡΠ³ΠΎΡΠ΅ΡΡΡΡΡ, ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Π²Π°ΠΆΠ½Π΅ΠΉΡΠΈΡ
Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΉ Π² Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΡΡΡΠΎΠ΅Π½ΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ° ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΡΡ
ΡΡΠ΅Π΄ΡΡΠ² Π½Π° ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ³Π΅. Π‘Π΅ΡΠΈΠΉΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²ΠΎ Π²ΡΡΠΎΠΊΠΎΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ½ΡΡ
ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ Ρ Π±ΠΎΠ»ΡΡΠΈΠΌ Π·Π°ΠΏΠ°ΡΠΎΠΌ Ρ
ΠΎΠ΄Π° ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΠ΅Ρ ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΈ ΡΡΠ½ΠΊΠ° ΡΠ½Π΅ΡΠ³ΠΎΡΠ΅ΡΡΡΡΠΎΠ² ΠΈ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠΌΡ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π²ΡΠ΅Π³ΠΎ ΡΠΎΠΏΠ»ΠΈΠ²Π½ΠΎ-ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ΅ΠΊΡΠΎΡΠ°. ΠΠ»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΡΠ½Π΅ΡΠ³ΠΎΠΏΠΎΡΡΠ΅Π±Π»Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ Π² ΡΡΠ°ΡΡΠ΅ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΡΡΡΠ°ΡΠ΅Π³ΠΈΠΈ ΡΠ΅ΠΊΡΠΏΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ Π½Π° Π±Π°Π·Π΅ ΠΈΠΌΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ Nissan Leaf, Π²ΠΊΠ»ΡΡΠ°ΡΡΠ΅ΠΉ ΡΡΠ±ΠΌΠΎΠ΄ΡΠ»ΠΈ ΡΡΠ³ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ, Π³ΠΈΠ±ΡΠΈΠ΄Π½ΠΎΠΉ ΡΠΎΡΠΌΠΎΠ·Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ, ΡΡΠ³ΠΎΠ²ΠΎΠΉ Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠ½ΠΎΠΉ Π±Π°ΡΠ°ΡΠ΅ΠΈ ΠΈ ΡΠΈΠ½. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΠΏΠΎΡΡΠ°Π²Π»ΡΠ»ΠΈΡΡ Ρ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΌΠΈ Π΄Π°Π½Π½ΡΠΌΠΈ Π½Π°ΡΡΠ½ΠΎ-ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΡΠΊΠΎΠΉ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠΈΠΈ Lab Avt (Π‘Π¨Π), ΠΎΠΏΡΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Π½ΡΠΌΠΈ Π΄Π»Ρ ΠΏΡΠΎΠ²Π΅ΡΠΊΠΈ Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΠΎΡΡΠΈ ΠΈΠΌΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ, Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠΈΡ
Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°Π±ΠΎΡΠΈΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ ΠΈ ΠΎΡΠ΅Π½ΠΈΠ²Π°ΡΡΠΈΡ
ΠΈΡ
ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΡΠ΅Π³Π΅Π½Π΅ΡΠΈΡΠΎΠ²Π°ΡΡ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΏΡΠΈ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΠΈ. ΠΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½Π°Ρ ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΡΠ΅ΠΊΡΠΏΠ΅ΡΠ°ΡΠΈΠΈ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 4,5 %, ΡΡΠΎ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΠ΅Ρ ΠΎΠ± Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΠΎΡΡΠΈ ΠΈΠΌΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ Π΅Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π±Π°Π·ΠΎΠ²ΠΎΠΉ Π΄Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΈ ΡΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΠ½Π΅ΡΠ³ΠΎΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΡΡΠ°ΡΠ΅Π³ΠΈΠΉ ΡΠ΅ΠΊΡΠΏΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ. ΠΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠΎΠ², ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΠΌΠΎΠΉ ΡΡΡΠ°ΡΠ΅Π³ΠΈΠΈ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΠ»ΠΎΠΉ ΡΠ΅ΠΊΡΠΏΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ²Π΅Π»ΠΈΡΠΈΡΡ ΡΡΠ°ΡΠΈΠΊ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΏΠΎΠ΄Π·Π°ΡΡΠ΄ΠΊΠΈ Π² 2,14 ΡΠ°Π·Π° ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π±Π°Π·ΠΎΠ²ΠΎΠΉ ΡΡΡΠ°ΡΠ΅Π³ΠΈΠ΅ΠΉ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΎΡΠΌΠΎΠ·Π½ΡΡ
ΡΡΠΈΠ»ΠΈΠΉ ΠΏΠΎ ΠΎΡΡΠΌ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅Π΄ΡΡΠ²Π° ΠΏΡΠΈ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠΈ ΡΠΎΡΠΌΠΎΠ·Π½ΠΎΠ³ΠΎ ΠΏΡΡΠΈ Π½Π° 10Β ΠΌ. ΠΠ»ΡΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π½Π°Ρ ΡΡΡΠ°ΡΠ΅Π³ΠΈΡ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ ΡΠ΅ΠΊΡΠΏΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π±Π°Π·ΠΎΠ²ΠΎΠΉ ΡΡΡΠ°ΡΠ΅Π³ΠΈΠ΅ΠΉ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ ΡΠΎΡΠΌΠΎΠ·Π½ΠΎΠ³ΠΎ ΠΏΡΡΠΈ Π½Π° 13,2Β % ΠΏΡΠΈ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠΈ Π½Π° 84,4Β % ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π²ΡΡΠ°Π±Π°ΡΡΠ²Π°Π΅ΠΌΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΌ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π΄Π»Ρ ΠΏΠΎΠ΄Π·Π°ΡΡΠ΄ΠΊΠΈ ΡΡΠ³ΠΎΠ²ΡΡ
Π°ΠΊΠΊΡΠΌΡΠ»ΡΡΠΎΡΠ½ΡΡ
Π±Π°ΡΠ°ΡΠ΅ΠΉ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π°ΡΡ ΠΈΠΌΠ΅ΡΡΠΈΠΉΡΡ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π» ΠΏΠΎ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ Π·Π° ΡΡΠ΅Ρ ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ ΡΡΡΠ°ΡΠ΅Π³ΠΈΠΈ ΠΈ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΠ΅ΠΊΡΠΏΠ΅ΡΠ°ΡΠΈΠ΅ΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ