1,654 research outputs found

    Current driven quantum criticality in itinerant electron ferromagnets

    Full text link
    We determine the effect of an in-plane current flow on the critical properties of a 2d itinerant electron system near a ferromagnetic-paramagnetic quantum critical point. We study a model in which a nonequilibrium steady state is established as a result of exchange of particles and energy with an underlying substrate. the current j⃗\vec{j} gives rise not only to an effective temperature equal to the voltage drop over a distance of order the mean free path, but also to symmetry breaking terms of the form j⃗⋅nabla⃗\vec{j}\cdot \vec{nabla} in the effective action. The effect of the symmetry breaking on the fluctuational and critical properties is found to be small although (in agreement with previous results) if rotational degrees of freedom are important, the current can make the classically ordered state dynamically unstable.Comment: 4 pages, published versio

    Electronic Transport in Fullerene C20 Bridge Assisted by Molecular Vibrations

    Full text link
    The effect of molecular vibrations on electronic transport is investigated with the smallest fullerene C20 bridge, utilizing the Keldysh nonequilibrium Green's function techniques combined with the tight-binding molecular-dynamics method. Large discontinuous steps appear in the differential conductance when the applied bias-voltage matches particular vibrational energies. The magnitude of the step is found to vary considerably with the vibrational mode and to depend on the local electronic states besides the strength of electron-vibration coupling. On the basis of this finding, a novel way to control the molecular motion by adjusting the gate voltage is proposed.Comment: 9 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Enhancing laser sideband cooling in one-dimensional optical lattices via the dipole interaction

    Full text link
    We study resolved sideband laser cooling of a one-dimensional optical lattice with one atom per site, and in particular the effect of the dipole interaction between radiating atoms. For simplicity, we consider the case where only a single cooling laser is applied. We derive a master equation, and solve it in the limit of a deep lattice and weak laser driving. We find that the dipole interaction significantly changes the final temperature of the particles, increasing it for some phonon wavevectors and decreasing it for others. The total phonon energy over all modes is typically higher than in the non-interacting case, but can be made lower by the right choice of parameters

    Efficient grid-based method in nonequilibrium Green's function calculations. Application to model atoms and molecules

    Full text link
    We propose and apply the finite-element discrete variable representation to express the nonequilibrium Green's function for strongly inhomogeneous quantum systems. This method is highly favorable against a general basis approach with regard to numerical complexity, memory resources, and computation time. Its flexibility also allows for an accurate representation of spatially extended hamiltonians, and thus opens the way towards a direct solution of the two-time Schwinger/Keldysh/Kadanoff-Baym equations on spatial grids, including e.g. the description of highly excited states in atoms. As first benchmarks, we compute and characterize, in Hartree-Fock and second Born approximation, the ground states of the He atom, the H2_2 molecule and the LiH molecule in one spatial dimension. Thereby, the ground-state/binding energies, densities and bond-lengths are compared with the direct solution of the time-dependent Schr\"odinger equation.Comment: 11 pages, 5 figures, submitted to Physical Review

    Nonequilibrium transport and optical properties of model metal--Mott-insulator--metal heterostructures

    Full text link
    Electronic properties of heterostructures in which a finite number of Mott-insulator layers are sandwiched by semi-infinite metallic leads are investigated by using the dynamical-mean-field method combined with the Keldysh Green's function technique to account for the finite bias voltage between the leads. Current across the junction is computed as a function of bias voltage. Electron spectral functions in the interacting region are shown to evolve by an applied bias voltage. This effect is measurable by photoemission spectroscopy and scanning tunneling microscopy. Further predictions are made for the optical conductivity under a bias voltage as a possible tool to detect a deformed density of states. A general discussion of correlated-electron based heterostructures and future prospect is given.Comment: 11 pages, 11 figures, published versio

    Schwinger-Keldysh approach to out of equilibrium dynamics of the Bose Hubbard model with time varying hopping

    Full text link
    We study the real time dynamics of the Bose Hubbard model in the presence of time-dependent hopping allowing for a finite temperature initial state. We use the Schwinger-Keldysh technique to find the real-time strong coupling action for the problem at both zero and finite temperature. This action allows for the description of both the superfluid and Mott insulating phases. We use this action to obtain dynamical equations for the superfluid order parameter as hopping is tuned in real time so that the system crosses the superfluid phase boundary. We find that under a quench in the hopping, the system generically enters a metastable state in which the superfluid order parameter has an oscillatory time dependence with a finite magnitude, but disappears when averaged over a period. We relate our results to recent cold atom experiments.Comment: 22 pages, 7 figure

    Competing order and nature of the pairing state in the iron pnictides

    Full text link
    We show that the competition between magnetism and superconductivity can be used to determine the pairing state in the iron arsenides. To this end we demonstrate that the itinerant antiferromagnetic phase (AFM) and the unconventional s+−s^{+-} sign-changing superconducting state (SC) are near the borderline of microscopic coexistence and macroscopic phase separation, explaining the experimentally observed competition of both ordered states. In contrast, conventional s++s^{++} pairing is not able to coexist with magnetism. Expanding the microscopic free energy of the system with competing orders around the multicritical point, we find that static magnetism plays the role of an intrinsic interband Josephson coupling, making the phase diagram sensitive to the symmetry of the Cooper pair wavefunction. We relate this result to the quasiparticle excitation spectrum and to the emergent SO(5)(5) symmetry of systems with particle-hole symmetry. Our results rely on the assumption that the same electrons that form the ordered moment contribute to the superconducting condensate and that the system is close to particle-hole symmetry. We also compare the suppression of SC in different regions of the FeAs phase diagram, showing that while in the underdoped side it is due to the competition with AFM, in the overdoped side it is related to the disappearance of pockets from the Fermi surface.Comment: 24 pages, 13 figures; revised versio

    Low-Energy Structures in Strong Field Ionization Revealed by Quantum Orbits

    Full text link
    Experiments on atoms in intense laser pulses and the corresponding exact ab initio solutions of the time-dependent Schr\"odinger equation (TDSE) yield photoelectron spectra with low-energy features that are not reproduced by the otherwise successful work horse of strong field laser physics: the "strong field approximation" (SFA). In the semi-classical limit, the SFA possesses an appealing interpretation in terms of interfering quantum trajectories. It is shown that a conceptually simple extension towards the inclusion of Coulomb effects yields very good agreement with exact TDSE results. Moreover, the Coulomb quantum orbits allow for a physically intuitive interpretation and detailed analysis of all low-energy features in the semi-classical regime, in particular the recently discovered "low-energy structure" [C.I. Blaga et al., Nature Physics 5, 335 (2009) and W. Quan et al., Phys. Rev. Lett. 103, 093001 (2009)].Comment: 4 pages, 3 figures, REVTe

    Bias-induced insulator-metal transition in organic electronics

    Full text link
    We investigate the bias-induced insulator-metal transition in organic electronics devices, on the basis of the Su-Schrieffer-Heeger model combined with the non-equilibrium Green's function formalism. The insulator-metal transition is explained with the energy levels crossover that eliminates the Peierls phase and delocalizes the electron states near the threshold voltage. This may account for the experimental observations on the devices that exhibit intrinsic bistable conductance switching with large on-off ratio.Comment: 6 pages, 3 figures. To appear in Applied Physics Letter

    Dynamic equation for quantum Hall bilayers with spontaneous interlayer coherence: The low-density limit

    Full text link
    The bilayer systems exhibit the Bose-Einstein condensation of excitons that emerge due to Coulomb pairing of electrons belonging to one layer with the holes belonging to the other layer. Here we present the microscopic derivation of the dynamic equation for the condensate wave function at a low density of electron-hole (e−he-h) pairs in a strong magnetic field perpendicular to the layers and an electric field directed along the layers. From this equation we obtain the dispersion law for collective excitations of the condensate and calculate the electric charge of the vortex in the exciton condensate. The critical interlayer spacing, the excess of which leads to a collapse of the superfluid state, is estimated. In bilayer systems with curved conducting layers, the effective mass of the e−he-h pair becomes the function of the e−he-h pair coordinates, the regions arise, where the energy of the e−he-h pair is lowered (exciton traps), and lastly e−he-h pairs can gain the polarization in the basal plane. This polarization leads to the appearance of quantized vortices even at zero temperature.Comment: 8 page
    • …
    corecore