23 research outputs found

    МОДЕЛЬ И АЛГОРИТМ ДЛЯ РАСЧЕТА ЭФФЕКТИВНОЙ ПЛОЩАДИ РАССЕЯНИЯ ИМИТАТОРА РАДИОЛОКАЦИОННОГО ОБЪЕКТА

    Get PDF
    To reduce the cost of field tests of the ballistic objects (BO) simulators reflection properties, it is advisable to develop a model and algorithm for calculation of the radar objects effective surface scattering. As a simulator of ballistic objects a complex radar reflector, made of a lossfree dielectric is chosen. It looks like a spherical Luneburg lens with a coating of high-conductivity alloy as well as a truncated cone, disk, and cylindrical elements. The stages of aperture version of reflection from the inner surface of the Luneburg lens are proposed. A physical model of the reflection on the elements of design and the technique of modeling with a calculation algorithm of the effective surface scattering are developed. The algorithm of calculation of the ballistic objects resonance effective surface scattering is worked out. This algorithm is presented in a graphical form. The interface of the computing complex is presented. As a simulator of ballistic object we selected a complex radar reflector, made of a lossfree dielectric sphere with a coating of high-conductivity alloy as well as of a truncated cone, disk, and cylindrical elements. The comparative indicatrices of ballistic objects simulator are presented. The conclusion on the comparative analysis of the results of measurements in situ and modeling results is made. The examples of numerical calculations of the ESR of the head part of the BO simulator with increased ESR and increased all-aspect view are given. The options of the BO simulator head parts with increased ESR and increased all-aspect view with optimal placement of radar dielectric reflector and a corner unit with sectional placement of dielectric reflectors are analyzed.Для сокращения затрат на натурные испытания отражающих свойств имитаторов баллистических объектов (БО) целесообразно разработать модель и алгоритм для расчета эффективной поверхности рассеяния таких радиолокационных объектов. В качестве имитатора баллистических объектов выбирается сложный радиолокационный отражатель, изготовленный из диэлектрика без потерь в виде сферической линзы Люнеберга с покрытием из высокоэлектропроводного сплава, а также усеченного конуса, диска и цилиндрических элементов. Предложены этапы апертурного варианта отражения от внутренней поверхности линзы Люнеберга. Разработана физическая модель отражения на элементах конструкции и методика моделирования с алгоритмом расчета эффективной поверхности рассеяния. Разработан алгоритм расчета резонансной эффективной поверхности рассеяния баллистических объектов. Этот алгоритм представлен в графическом виде. Представлен интерфейс вычислительного комплекса. В качестве имитатора баллистического объекта выбран сложный радиолокационный отражатель, изготовленный из диэлектрика без потерь в виде сферы с покрытием из высокоэлектропроводного сплава, а также усеченного конуса, диска и цилиндрических элементов. Графически представлены сравнительные индикатрисы имитатора баллистических объектов. Сделан вывод по сравнительному анализу результатов измерения в натурных условиях и результатов моделирования. Приведены примеры численных расчетов ЭПР головной части имитатора БО с увеличенной ЭПР и увеличенной всеракурсностью обзора. Исследованы варианты головных частей имитатора БО с увеличенной ЭПР и увеличенной всеракурсностью обзора с оптимальным размещением радиолокационного диэлектрического отражателя и уголкового блока с секционным размещением диэлектрических отражателей

    MODEL AND ALGORITHM FOR CALCULATION OF THE RADAR SIMULATOR OBJECT EFFECTIVE SQUARE OF SCATTERING

    No full text
    To reduce the cost of field tests of the ballistic objects (BO) simulators reflection properties, it is advisable to develop a model and algorithm for calculation of the radar objects effective surface scattering. As a simulator of ballistic objects a complex radar reflector, made of a lossfree dielectric is chosen. It looks like a spherical Luneburg lens with a coating of high-conductivity alloy as well as a truncated cone, disk, and cylindrical elements. The stages of aperture version of reflection from the inner surface of the Luneburg lens are proposed. A physical model of the reflection on the elements of design and the technique of modeling with a calculation algorithm of the effective surface scattering are developed. The algorithm of calculation of the ballistic objects resonance effective surface scattering is worked out. This algorithm is presented in a graphical form. The interface of the computing complex is presented. As a simulator of ballistic object we selected a complex radar reflector, made of a lossfree dielectric sphere with a coating of high-conductivity alloy as well as of a truncated cone, disk, and cylindrical elements. The comparative indicatrices of ballistic objects simulator are presented. The conclusion on the comparative analysis of the results of measurements in situ and modeling results is made. The examples of numerical calculations of the ESR of the head part of the BO simulator with increased ESR and increased all-aspect view are given. The options of the BO simulator head parts with increased ESR and increased all-aspect view with optimal placement of radar dielectric reflector and a corner unit with sectional placement of dielectric reflectors are analyzed

    Faster drying of dinas ? Concrete blocks

    No full text

    High-temperature firing of graphite-chamotte nozzles

    No full text

    Drying dinas concrete blocks

    No full text
    corecore