4 research outputs found

    Characterization of Erbium-Doped Nanoparticles in Transparent Glass Ceramic Optical Fibres

    Get PDF
    We report on using nanometric mass spectroscopy and molecular dynamics modelling to characterize the composition and structure of self-grown erbium-doped nanoparticles in transparent glass ceramic optical fibres fabricated by modified chemical vapour deposition without post-ceramming

    Presentation and Preliminary Results of DROÏD Project: Development of a Distributed Optical Fibre Dosimeter

    Get PDF
    International audienceABSTRACT DROÏD project is intended to develop a distributed optical fibre dosimeter based on Radiation-Induced Attenua-tion (RIA). The RIA will be measured by a high resolution Optical Time Domain Reflectometry (OTDR) technique that allows to locate the irradiated fibre section. The first part of the project focuses on designing a high radiation sensitive fibre. As a preliminary work, the attenu-ation of several fibres with various compositions has been recorded in situ during and after irradiation. The experimental setup and RIA values are presented and discussed. Several dopants and their combinations have been identified as a good starting point to design a highly radiation sensitive fibre

    Birefringence analysis of multilayer leaky cladding optical fibre

    Get PDF
    We analyse a multilayer leaky cladding (MLC) fibre using the finite element method and study the effect of the MLC on the bending loss and birefringence of two types of structures: (i) a circular core large-mode-area structure and (ii) an elliptical-small-core structure. In a large-mode-area structure, we verify that the multilayer leaky cladding strongly discriminates against higher order modes to achieve single-mode operation, the fibre shows negligible birefringence, and the bending loss of the fibre is low for bending radii larger than 10 cm. In the elliptical-small-core structure we show that the MLC reduces the birefringence of the fibre. This prevents the structure from becoming birefringent in case of any departures from circular geometry. The study should be useful in the designs of MLC fibres for various applications including high power amplifiers, gain flattening of fibre amplifiers and dispersion compensation.Comment: 18 page

    Erbium-doped transparent glass ceramic optical fibres: Characterization using mass spectroscopy and molecular dynamics modeling

    Get PDF
    Rare earth (RE) doped silica-based optical fibres with transparent glass ceramic (TGC) core were fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped dielectric nanoparticles (DNP), their density and mean diameter in thefibres are dictated by various parameters. This paper reports on progresses in the fine characterization of the nanopaticles, particularly their dimensions and composition, using nanosclae mass spectroscpy and molecular dynamics modeling, and alteration of the spectroscopic properties of the erbium ions embedded within the phospho-silicate DNP. These results permit to get more insight into the complex process of the DNP self-nucleation and growth during the fibre fabrication process. This fabrication route could have important potentials in improving rare-earth-doped fibre amplifiers and laser sources
    corecore