341 research outputs found

    Local Antiferromagnetic Correlations and dx2y2d_{x^2-y^2} Pairing

    Full text link
    The high TcT_c cuprate superconductors doped near half-filling have short range antiferromagnetic correlations. Here we describe an intuitive local picture of why, if pairing occurs in the presence of short-range antiferromagnetic correlations, the orbital state will have dx2y2d_{x^2-y^2} symmetry.Comment: 8 pages and one figur

    Heavy holes: precursor to superconductivity in antiferromagnetic CeIn3

    Full text link
    Numerous phenomenological parallels have been drawn between f- and d- electron systems in an attempt to understand their display of unconventional superconductivity. The microscopics of how electrons evolve from participation in large moment antiferromagnetism to superconductivity in these systems, however, remains a mystery. Knowing the origin of Cooper paired electrons in momentum space is a crucial prerequisite for understanding the pairing mechanism. Of especial interest are pressure-induced superconductors CeIn3 and CeRhIn5 in which disparate magnetic and superconducting orders apparently coexist - arising from within the same f-electron degrees of freedom. Here we present ambient pressure quantum oscillation measurements on CeIn3 that crucially identify the electronic structure - potentially similar to high temperature superconductors. Heavy pockets of f-character are revealed in CeIn3, undergoing an unexpected effective mass divergence well before the antiferromagnetic critical field. We thus uncover the softening of a branch of quasiparticle excitations located away from the traditional spin-fluctuation dominated antiferromagnetic quantum critical point. The observed Fermi surface of dispersive f-electrons in CeIn3 could potentially explain the emergence of Cooper pairs from within a strong moment antiferromagnet.Comment: To appear in Proceedings of the National Academy of Science

    Magnetic Properties of Undoped C60C_{60}

    Full text link
    The Heisenberg antiferromagnet, which arises from the large UU Hubbard model, is investigated on the C60C_{60} molecule and other fullerenes. The connectivity of C60C_{60} leads to an exotic classical ground state with nontrivial topology. We argue that there is no phase transition in the Hubbard model as a function of U/tU/t, and thus the large UU solution is relevant for the physical case of intermediate coupling. The system undergoes a first order metamagnetic phase transition. We also consider the S=1/2 case using perturbation theory. Experimental tests are suggested.Comment: 12 pages, 3 figures (included

    Inelastic Quantum Transport

    Full text link
    We solve a Schrodinger equation for inelastic quantum transport that retains full quantum coherence, in contrast to previous rate or Boltzmann equation approaches. The model Hamiltonian is the zero temperature 1d Holstein model for an electron coupled to optical phonons (polaron), in a strong electric field. The Hilbert space grows exponentially with electron position, forming a non-standard Bethe lattice. We calculate nonperturbatively the transport current, electron-phonon correlations, and quantum diffusion. This system is a toy model for the constantly branching ``wavefunction of the universe''.Comment: revtex, 13 pages, 4 figure
    corecore