9 research outputs found

    Kinematics of the Orion Nebula Cluster: Velocity Substructure and Spectroscopic Binaries

    Full text link
    We present a kinematic study of the Orion Nebula Cluster based upon radial velocities measured by multi-fiber echelle spectroscopy at the 6.5 meter MMT and Magellan telescopes. Velocities are reported for 1613 stars, with multi-epoch data for 727 objects as part of our continuing effort to detect and analyze spectroscopic binaries. We confirm and extend the results of Furesz et al. showing that the ONC is not relaxed, consistent with its youth, and that the stars generally follow the position-velocity structure of the moderate density gas in the region, traced by 13^{13}CO. The additional radial velocities we have measured enable us to probe some discrepancies between stellar and gaseous structure which can be attributed to binary motion and the inclusion of non-members in our kinematic sample. Our multi-epoch data allow us to identify 89 spectroscopic binaries; more will be found as we continue monitoring. Our results reinforce the idea that the ONC is a cluster in formation, and thus provides a valuable testing ground for theory. In particular, our observations are not consistent with the quasi-equilibrium or slow contraction models of cluster formation, but are consistent with cold collapse models.Comment: 38 pages, 6 figures, 13 tables, accepted to Astrophysical Journal. Full tables are available upon reques

    Performance of the infrared array camera (IRAC) for SIRTF during instrument integration and test

    Get PDF
    The Infrared Array Camera (IRAC) is one of three focal plane instruments in the Space Infrared Telescope Facility (SIRTF). IRAC is a four-channel camera that obtains simultaneous images at 3.6, 4.5, 5.8, and 8 microns. Two adjacent 5.12x5.12 arcmin fields of view in the SIRTF focal plane are viewed by the four channels in pairs (3.6 and 5.8 microns; 4.5 and 8 microns). All four detector arrays in the camera are 256x256 pixels in size, with the two shorter wavelength channels using InSb and the two longer wavelength channels using Si:As IBC detectors. We describe here the results of the instrument functional and calibration tests completed at Ball Aerospace during the integration with the cryogenic telescope assembly, and provide updated estimates of the in-flight sensitivity and performance of IRAC in SIRTF

    Calibration and performance of the Infrared Array Camera (IRAC)

    Get PDF
    The Infrared Array Camera (IRAC) is one of three focal plane instruments in the Space Infrared Telescope Facility (SIRTF). IRAC is a four-channel camera that obtains simultaneous images at 3.6, 4.5, 5.8, and 8 microns. Two adjacent 5.125.12 arcmin fields of view in the SIRTF focal plane are viewed by the four channels in pairs (3.6 and 5.8 microns; 4.5 and 8 microns) . All four detector arrays in the camera are 256256 pixels in size, with the two shorter wavelength channels using InSb and the two longer wavelength channels using Si:As IBC detectors. We describe here the results of the instrument functionality and calibration tests completed at Goddard Space Flight Center, and provide estimates of the in-flight sensitivity and performance of IRAC in SIRTF

    Performance of the Infrared Array Camera (IRAC) for SIRTF during Instrument Integration and Test

    No full text
    The Infrared Array Camera (IRAC) is one of three focal plane instruments in the Space Infrared Telescope Facility (SIRTF). IRAC is a four-channel camera that obtains simultaneous images at 3.6, 4.5, 5.8, and 8 microns. Two adjacent 5.125.12 arcmin fields of view in the SIRTF focal plane are viewed by the four channels in pairs (3.6 and 5.8 microns; 4.5 and 8 microns). All four detector arrays in the camera are 256256 pixels in size, with the two shorter wavelength channels using InSb and the two longer wavelength channels using Si:As IBC detectors. We describe here the results of the instrument functional and calibration tests completed at Ball Aerospace during the integration with the cryogenic telescope assembly, and provide updated estimates of the in-flight sensitivity and performance of IRAC in SIRTF
    corecore