639 research outputs found

    Global Well-posedness of the 3D Primitive Equations With Partial Vertical Turbulence Mixing Heat Diffusion

    Full text link
    The three--dimensional incompressible viscous Boussinesq equations, under the assumption of hydrostatic balance, govern the large scale dynamics of atmospheric and oceanic motion, and are commonly called the primitive equations. To overcome the turbulence mixing a partial vertical diffusion is usually added to the temperature advection (or density stratification) equation. In this paper we prove the global regularity of strong solutions to this model in a three-dimensional infinite horizontal channel, subject to periodic boundary conditions in the horizontal directions, and with no-penetration and stress-free boundary conditions on the solid, top and bottom, boundaries. Specifically, we show that short time strong solutions to the above problem exist globally in time, and that they depend continuously on the initial data

    A Blow-Up Criterion for the 3D Euler Equations Via the Euler-Voigt Inviscid Regularization

    Full text link
    We propose a new blow-up criterion for the 3D Euler equations of incompressible fluid flows, based on the 3D Euler-Voigt inviscid regularization. This criterion is similar in character to a criterion proposed in a previous work by the authors, but it is stronger, and better adapted for computational tests. The 3D Euler-Voigt equations enjoy global well-posedness, and moreover are more tractable to simulate than the 3D Euler equations. A major advantage of these new criteria is that one only needs to simulate the 3D Euler-Voigt, and not the 3D Euler equations, to test the blow-up criteria, for the 3D Euler equations, computationally

    Global Regularity vs. Finite-Time Singularities: Some Paradigms on the Effect of Boundary Conditions and Certain Perturbations

    Full text link
    In light of the question of finite-time blow-up vs. global well-posedness of solutions to problems involving nonlinear partial differential equations, we provide several cautionary examples which indicate that modifications to the boundary conditions or to the nonlinearity of the equations can effect whether the equations develop finite-time singularities. In particular, we aim to underscore the idea that in analytical and computational investigations of the blow-up of three-dimensional Euler and Navier-Stokes equations, the boundary conditions may need to be taken into greater account. We also examine a perturbation of the nonlinearity by dropping the advection term in the evolution of the derivative of the solutions to the viscous Burgers equation, which leads to the development of singularities not present in the original equation, and indicates that there is a regularizing mechanism in part of the nonlinearity. This simple analytical example corroborates recent computational observations in the singularity formation of fluid equations

    Higher-Order Global Regularity of an Inviscid Voigt-Regularization of the Three-Dimensional Inviscid Resistive Magnetohydrodynamic Equations

    Full text link
    We prove existence, uniqueness, and higher-order global regularity of strong solutions to a particular Voigt-regularization of the three-dimensional inviscid resistive Magnetohydrodynamic (MHD) equations. Specifically, the coupling of a resistive magnetic field to the Euler-Voigt model is introduced to form an inviscid regularization of the inviscid resistive MHD system. The results hold in both the whole space \nR^3 and in the context of periodic boundary conditions. Weak solutions for this regularized model are also considered, and proven to exist globally in time, but the question of uniqueness for weak solutions is still open. Since the main purpose of this line of research is to introduce a reliable and stable inviscid numerical regularization of the underlying model we, in particular, show that the solutions of the Voigt regularized system converge, as the regularization parameter \alpha\maps0, to strong solutions of the original inviscid resistive MHD, on the corresponding time interval of existence of the latter. Moreover, we also establish a new criterion for blow-up of solutions to the original MHD system inspired by this Voigt regularization. This type of regularization, and the corresponding results, are valid for, and can also be applied to, a wide class of hydrodynamic models

    Feedback Control of Nonlinear Dissipative Systems by Finite Determining Parameters - A Reaction-diffusion Paradigm

    Full text link
    We introduce here a simple finite-dimensional feedback control scheme for stabilizing solutions of infinite-dimensional dissipative evolution equations, such as reaction-diffusion systems, the Navier-Stokes equations and the Kuramoto-Sivashinsky equation. The designed feedback control scheme takes advantage of the fact that such systems possess finite number of determining parameters (degrees of freedom), namely, finite number of determining Fourier modes, determining nodes, and determining interpolants and projections. In particular, the feedback control scheme uses finitely many of such observables and controllers. This observation is of a particular interest since it implies that our approach has far more reaching applications, in particular, in data assimilation. Moreover, we emphasize that our scheme treats all kinds of the determining projections, as well as, the various dissipative equations with one unified approach. However, for the sake of simplicity we demonstrate our approach in this paper to a one-dimensional reaction-diffusion equation paradigm
    • …
    corecore