3,653 research outputs found
Gluon Chain Model of the Confining Force
We develop a picture of the QCD string as a chain of constituent gluons,
bound by attractive nearest-neighbor forces which may be treated
perturbatively. This picture accounts for both Casimir scaling at large N, and
the asymptotic center dependence of the static quark potential. We discuss the
relevance, to the gluon-chain picture, of recent three-loop results for the
static quark potential. A variational framework is presented for computing the
minimal energy and wavefunction of a long gluon chain, which enables us to
derive both the logarithmic broadening of the QCD flux tube (``roughening''),
and the existence of a Luscher -c/R term in the potential.Comment: 25 pages, 5 figures, latex2
Defining the Force between Separated Sources on a Light Front
The Newtonian character of gauge theories on a light front requires that the
longitudinal momentum P^+, which plays the role of Newtonian mass, be
conserved. This requirement conflicts with the standard definition of the force
between two sources in terms of the minimal energy of quantum gauge fields in
the presence of a quark and anti-quark pinned to points separated by a distance
R. We propose that, on a light front, the force be defined by minimizing the
energy of gauge fields in the presence of a quark and an anti-quark pinned to
lines (1-branes) oriented in the longitudinal direction singled out by the
light front and separated by a transverse distance R. Such sources will have a
limited 1+1 dimensional dynamics. We study this proposal for weak coupling
gauge theories by showing how it leads to the Coulomb force law. For QCD we
also show how asymptotic freedom emerges by evaluating the S-matrix through one
loop for the scattering of a particle in the N_c representation of color
SU(N_c) on a 1-brane by a particle in the \bar N_c representation of color on a
parallel 1-brane separated from the first by a distance R<<1/Lambda_{QCD}.
Potential applications to the problem of confinement on a light front are
discussed.Comment: LaTeX, 15 pages, 12 figures; minor typos corrected; numerical
correction in equation 3.
Parametric Analysis Using the Finite Element Method to Investigate Prosthetic Interface Stresses for Persons with Trans-tibial Amputation
A finite element (FE) model of the below-knee residual limb and prosthetic socket was created to investigate the effects of parameter variations on the interface stress distribution during static stance. This model was based upon geometric approximations of anthropometric residual limb geometry. The model was not specific to an individual with amputation, but could be scaled to approximate the limb of a particular subject. Parametric analyses were conducted to investigate the effects of prosthetic socket design and residual limb geometry on the residual limb/prosthetic socket interface stresses. Behavioral trends were illustrated via sensitivity analysis.
The results of the parametric analyses indicate that the residual limb/prosthetic socket interface stresses are affected by variations in both prosthetic design and residual limb geometry. Specifically, the analyses indicate : 1) the residual limb/prosthetic liner interface pressures are relatively insensitive to the socket stiffness ; 2) the stiffness of the prosthetic liner influences the interface stress distribution for both the unrectified and patellar-tendon-bearing (PTB) rectified models-- the external load state appears to influence the interface pressure distribution, while the prosthetic socket rectification appears to influence the interface shear stress distribution ; 3) the interface pressures are - very sensitive to the prosthetic rectification ; 4) the shape and relative bulk of soft tissue may significantly influence the interface pressure distribution ; 5) the interface pressure distribution is also influenced by the residual limb length; and 6) the stiffness/compliance of the residual limb soft tissues may significantly alter the interface pressure distribution
ScotGrid: A Prototype Tier 2 Centre
ScotGrid is a prototype regional computing centre formed as a collaboration
between the universities of Durham, Edinburgh and Glasgow as part of the UK's
national particle physics grid, GridPP. We outline the resources available at
the three core sites and our optimisation efforts for our user communities. We
discuss the work which has been conducted in extending the centre to embrace
new projects both from particle physics and new user communities and explain
our methodology for doing this.Comment: 4 pages, 4 diagrams. Presented at Computing for High Energy and
Nuclear Physics 2004 (CHEP '04). Interlaken, Switzerland, September 200
Generic, Geometric Finite Element Analysis of the Transtibial Residual Limb and Prosthetic Socket
Finite element analysis was used to investigate the stress distribution between the residual limb and prosthetic socket of persons with transtibial amputation (TTA). The purpose of this study was to develop a tool to provide a quantitative estimate of prosthetic interface pressures to improve our understanding of residual limb/prosthetic socket biomechanics and prosthetic fit. FE models of the residual limb and prosthetic socket were created. In contrast to previous FE models of the prosthetic socket/residual limb system, these models were not based on the geometry of a particular individual, but instead were based on a generic, geometric approximation of the residual limb. These models could then be scaled for the limbs of specific individuals. The material properties of the bulk soft tissues of the residual limb were based upon local in vivo indentor studies. Significant effort was devoted toward the validation of these generic, geometric FE models; prosthetic interface pressures estimated via the FE model were compared to experimentally determined interface pressures for several persons with TTA in a variety of socket designs and static load/alignment states. The FE normal stresses were of the same order of magnitude as the measured stresses (0-200 kPa); however, significant differences in the stress distribution were observed. Although the generic, geometric FE models do not appear to accurately predict the stress distribution for specific subjects, the models have practical applications in comparative stress distribution studies
Spontaneous Symmetry Breaking at Infinite Momentum without P+ Zero-Modes
The nonrelativistic interpretation of quantum field theory achieved by
quantization in an infinite momentum frame is spoiled by the inclusion of a
mode of the field carrying p+=0. We therefore explore the viability of doing
without such a mode in the context of spontaneous symmetry breaking (SSB),
where its presence would seem to be most needed. We show that the physics of
SSB in scalar quantum field theory in 1+1 space-time dimensions is accurately
described without a zero-mode.Comment: LaTeX, 8 pages, 3 eps figure
The Outburst of the Blazar AO 0235+164 in 2006 December: Shock-in-Jet Interpretation
We present the results of polarimetric ( band) and multicolor photometric
() observations of the blazar AO 0235+16 during an outburst in 2006
December. The data reveal a short timescale of variability (several hours),
which increases from optical to near-IR wavelengths; even shorter variations
are detected in polarization. The flux density correlates with the degree of
polarization, and at maximum degree of polarization the electric vector tends
to align with the parsec-scale jet direction. We find that a variable component
with a steady power-law spectral energy distribution and very high optical
polarization (30-50%) is responsible for the variability. We interpret these
properties of the blazar withina model of a transverse shock propagating down
the jet. In this case a small change in the viewing angle of the jet, by
, and a decrease in the shocked plasma compression by a factor of
1.5 are sufficient to account for the variability.Comment: 22 pages, 8 figures, accepted for Ap
A Review of Prosthetic Interface Stress Investigations
Over the last decade, numerous experimental and numerical analyses have been conducted to investigate the stress distribution between the residual limb and prosthetic socket of persons with lower limb amputation. The objectives of these analyses have been to improve our understanding of the residual limb/prosthetic socket system, to evaluate the influence of prosthetic design parameters and alignment variations on the interface stress distribution, and to evaluate prosthetic fit. The purpose of this paper is to summarize these experimental investigations and identify associated limitations. In addition, this paper presents an overview of various computer models used to investigate the residual limb interface, and discusses the differences and potential ramifications of the various modeling formulations. Finally, the potential and future applications of these experimental and numerical analyses in prosthetic design are presented
A theoretical study of microwave beam absorption by a rectenna
The rectenna's microwave power beam absorption limit was theoretically confirmed by two mathematical models descriptive of the microwave absorption process; first one model was based on the current sheet equivalency of a large planar array above a reflector and the second model, which was based on the properties of a waveguide with special imaging characteristics, quantified the electromagnetic modes (field configurations) in the immediate vicinity of a Rectenna element spacing which permit total power beam absorption by preventing unwanted modes from propagating (scattering) were derived using these models. Several factors causing unwanted scattering are discussed
Covariant And Local Field Theory On The World Sheet
In earlier work, using the light cone picture, a world sheet field theory
that sums planar phi^3 graphs was constructed and developed. Since this theory
is both non-local and not explicitly Lorentz invariant, it is desirable to have
a covariant and local alternative. In this paper, we construct such a covariant
and local world sheet theory, and show that it is equivalent to the original
non-covariant version.Comment: 22 pages,3 figures, typos and eqs.(11) and (63) are correcte
- âŚ