90 research outputs found

    Momentum dependent ultrafast electron dynamics in antiferromagnetic EuFe2As2

    Get PDF
    Employing the momentum-sensitivity of time- and angle-resolved photoemission spectroscopy we demonstrate the analysis of ultrafast single- and many-particle dynamics in antiferromagnetic EuFe2As2. Their separation is based on a temperature-dependent difference of photo-excited hole and electron relaxation times probing the single particle band and the spin density wave gap, respectively. Reformation of the magnetic order occurs at 800 fs, which is four times slower compared to electron-phonon equilibration due to a smaller spin-dependent relaxation phase space

    Temperature independent band structure of WTe2 as observed from ARPES

    Full text link
    Extremely large magnetoresistance (XMR), observed in transition metal dichalcogendies, WTe2_2, has attracted recently a great deal of research interests as it shows no sign of saturation up to the magnetic field as high as 60 T, in addition to the presence of type-II Weyl fermions. Currently, there has been a lot of discussion on the role of band structure changes on the temperature dependent XMR in this compound. In this contribution, we study the band structure of WTe2_2 using angle-resolved photoemission spectroscopy (ARPES) and first-principle calculations to demonstrate that the temperature dependent band structure has no substantial effect on the temperature dependent XMR as our measurements do not show band structure changes on increasing the sample temperature between 20 and 130 K. We further observe an electronlike surface state, dispersing in such a way that it connects the top of bulk holelike band to the bottom of bulk electronlike band. Interestingly, similar to bulk states, the surface state is also mostly intact with the sample temperature. Our results provide invaluable information in shaping the mechanism of temperature dependent XMR in WTe2_2.Comment: 7 pages, 3 figures. arXiv admin note: text overlap with arXiv:1705.0721

    Magnetocrystalline Anisotropy and Magnetocaloric Effect Studies on the Room-temperature 2D Ferromagnetic Cr4_4Te5_5

    Full text link
    We present a thorough study on the magnetoanisotropic properties and magnetocaloric effect in the layered ferromagnetic Cr4_4Te5_5 single crystals by performing the critical behaviour analysis of magnetization isotherms. The critical exponents β\beta=0.485(3), γ\gamma=1.202(5), and δ\delta=3.52(3) with a Curie temperature of TC340.73(4)T_C \approx 340.73(4) K are determined by the modified Arrott plots. We observe a large magnetocrystalline anisotropy Ku_u=330 kJ/m3m^3 at 3 K which gradually decreases with increasing temperature. Maximum entropy change -ΔSMmax\Delta S_{M}^{max} and the relative cooling power (RCP) are found to be 2.77 J/kgKJ/kg-K and 88.29 J/kgJ/kg, respectively near TCT_C when the magnetic field applied parallel to ab\it{ab}-plane. Rescaled -ΔSM(T,H)\Delta S_M (T, H) data measured at various temperatures and fields collapse into a single universal curve, confirming the second order magnetic transition in this system. Following the renormalization group theory analysis, we find that the spin-coupling is of 3D Heisenberg-type, {d:n}={3:3}\{d:n\}=\{3:3\}, with long-range exchange interactions decaying as J(r)=r(d+σ)=r4.71J (r) = r^{-(d+\sigma)}= r^{-4.71}.Comment: 10 pages, 7 figure

    Electrical, Thermal and Spectroscopic Characterization of Bulk Bi2Se3 Topological Insulator

    Get PDF
    We report electrical (angular magneto-resistance, and Hall), thermal (heat capacity) and spectroscopic (Raman, x-ray photo electron, angle resolved photo electron) characterization of bulk Bi2Se3 topological insulator, which is being is grown by self flux method through solid state reaction from high temperature (950C) melt and slow cooling (2C/hour) of constituent elements. Bi2Se3 exhibited metallic behaviour down to 5K. Magneto transport measurements revealed linear up to 400% and 30% MR at 5K under 14 Tesla field in perpendicular and parallel field direction respectively. We noticed that the magneto-resistance (MR) of Bi2Se3 is very sensitive to the angle of applied field. MR is maximum when the field is normal to the sample surface, while it is minimum when the field is parallel. Hall coefficient (RH) is seen nearly invariant with negative carrier sign down to 5K albeit having near periodic oscillations above 100K. Heat capacity (Cp) versus temperature plot is seen without any phase transitions down to 5K and is well fitted (Cp = gammaT + betaT3) at low temperature with calculated Debye temperature (ThetaD) value of 105.5K. Clear Raman peaks are seen at 72, 131 and 177 cm-1 corresponding to A1g1, Eg2 and A1g2 respectively. Though, two distinct asymmetric characteristic peak shapes are seen for Bi 4f7/2 and Bi 4f5/2, the Se 3d region is found to be broad displaying the overlapping of spin - orbit components of the same. Angle-resolved photoemission spectroscopy (ARPES) data of Bi2Se3 revealed distinctly the bulk conduction bands (BCB), surface state (SS), Dirac point (DP) and bulk valence bands (BVB) and 3D bulk conduction signatures are clearly seen. Summarily, host of physical properties for as grown Bi2Se3 crystal are reported here.Comment: 6 Pages Text + Figs; Comments Suggestions welcom

    Investigation of the Anomalous and Topological Hall Effects in Layered Monoclinic Ferromagnet Cr2.76_{2.76}Te4_4

    Full text link
    We studied the electrical transport, Hall effect, and magnetic properties of monoclinic layered ferromagnet Cr2.76_{2.76}Te4_4. Our studies demonstrate Cr2.76_{2.76}Te4_4 to be a soft ferromagnet with strong magnetocrystalline anisotropy. Below 50 K, the system shows an antiferromagnetic-like transition. Interestingly, between 50 and 150 K, we observe fluctuating magnetic moments between in-plane and out-of-plane orientations, leading to non-coplanar spin structure. On the other hand, the electrical resistivity data suggest it to be metallic throughout the measured temperature range, except a kinkkink at around 50 K due to AFM ordering. The Rhodes-Wohlfarth ratio μeffμs=1.89(>1)\frac{\mu_{eff}}{\mu_{s}}=1.89 (>1) calculated from our magnetic studies confirms that Cr2.76_{2.76}Te4_4 is an itinerant ferromagnet. Large anomalous Hall effect has been observed due to the skew-scattering of impurities and the topological Hall effect has been observed due to non-coplanar spin-structure in the presence of strong magnetocrystalline anisotropy. We examined the mechanism of anomalous Hall effect by employing the first principles calculations.Comment: 9 pages, 6 figures, To appear in Physical Review Material

    Effect of impurity substitution on band structure and mass renormalization of the correlated FeTe0.5_{0.5}Se0.5_{0.5} superconductor

    Get PDF
    Using angle-resolved photoemission spectroscopy (ARPES), we studied the effect of the impurity potential on the electronic structure of FeTe0.5_{0.5}Se0.5_{0.5} superconductor by substituting 10\% of Ni for Fe which leads to an electron doping of the system. We could resolve three hole pockets near the zone center and an electron pocket near the zone corner in the case of FeTe0.5_{0.5}Se0.5_{0.5}, whereas only two hole pockets near the zone center and an electron pocket near the zone corner are resolved in the case of Fe0.9_{0.9}Ni0.1_{0.1}Te0.5_{0.5}Se0.5_{0.5}, suggesting that the hole pocket having predominantly the xyxy orbital character is very sensitive to the impurity scattering. Upon electron doping, the size of the hole pockets decrease and the size of the electron pockets increase as compared to the host compound. However, the observed changes in the size of the electron and hole pockets are not consistent with the rigid-band model. Moreover, the effective mass of the hole pockets is reduced near the zone center and of the electron pockets is increased near the zone corner in the doped Fe0.9_{0.9}Ni0.1_{0.1}Te0.5_{0.5}Se0.5_{0.5} as compared to FeTe0.5_{0.5}Se0.5_{0.5}. We refer these observations to the changes of the spectral function due to the effect of the impurity potential of the dopants.Comment: 8 pages, 3 figure
    corecore