904 research outputs found

    Pseudospectral methods for atoms in strong magnetic fields

    Full text link
    We present a new pseudospectral algorithm for the calculation of the structure of atoms in strong magnetic fields. We have verified this technique for one, two and three-electron atoms in zero magnetic fields against laboratory results and find typically better than one-percent accuracy. We further verify this technique against the state-of-the-art calculations of hydrogen, helium and lithium in strong magnetic fields (up to about 2×1062\times 10^{6} T) and find a similar level of agreement. The key enabling advantages of the algorithm are its simplicity (about 130 lines of commented code) and its speed (about 102−10510^2-10^5 times faster than finite-element methods to achieve similar accuracy).Comment: 10 pages, version accepted to MNRA

    Diffusion-limited loop formation of semiflexible polymers: Kramers theory and the intertwined time scales of chain relaxation and closing

    Full text link
    We show that Kramers rate theory gives a straightforward, accurate estimate of the closing time Ï„c\tau_c of a semiflexible polymer that is valid in cases of physical interest. The calculation also reveals how the time scales of chain relaxation and closing are intertwined, illuminating an apparent conflict between two ways of calculating Ï„c\tau_c in the flexible limit.Comment: Europhys. Lett., 2003 (in press). 8 pages, 3 figures. See also, physics/0101087 for physicist's approach to and the importance of semiflexible polymer looping, in DNA replicatio

    Probing protein-protein interactions by dynamic force correlated spectroscopy (FCS)

    Full text link
    We develop a formalism for single molecule dynamic force spectroscopy to map the energy landscape of protein-protein complex (P1P_1P2P_2). The joint distribution P(Ï„1,Ï„2)P(\tau_1,\tau_2) of unbinding lifetimes Ï„1\tau_1 and Ï„2\tau_2 measurable in a compression-tension cycle, which accounts for the internal relaxation dynamics of the proteins under tension, shows that the histogram of Ï„1\tau_1 is not Poissonian. The theory is applied to the forced unbinding of protein P1P_1, modeled as a wormlike chain, from P1P_1P2P_2. We propose a new class of experiments which can resolve the effect of internal protein dynamics on the unbinding lifetimes.Comment: 12 pages, 3 figures, accepted to Phys. Rev. Let
    • …
    corecore