7 research outputs found

    Zinc Finger Database (ZiFDB): a repository for information on C2H2 zinc fingers and engineered zinc-finger arrays

    Get PDF
    Zinc fingers are the most abundant DNA-binding motifs encoded by eukaryotic genomes and one of the best understood DNA-recognition domains. Each zinc finger typically binds a 3-nt target sequence, and it is possible to engineer zinc-finger arrays (ZFAs) that recognize extended DNA sequences by linking together individual zinc fingers. Engineered zinc-finger proteins have proven to be valuable tools for gene regulation and genome modification because they target specific sites in a genome. Here we describe ZiFDB (Zinc Finger Database; http://bindr.gdcb.iastate.edu/ZiFDB), a web-accessible resource that compiles information on individual zinc fingers and engineered ZFAs. To enhance its utility, ZiFDB is linked to the output from ZiFiTā€”a software package that assists biologists in finding sites within target genes for engineering zinc-finger proteins. For many molecular biologists, ZiFDB will be particularly valuable for determining if a given ZFA (or portion thereof) has previously been constructed and whether or not it has the requisite DNA-binding activity for their experiments. ZiFDB will also be a valuable resource for those scientists interested in better understanding how zinc-finger proteins recognize target DNA

    Selection-Free Zinc-Finger Nuclease Engineering by Context-Dependent Assembly (CoDA)

    Get PDF
    Engineered zinc-finger nucleases (ZFNs) enable targeted genome modification. Here we describe Context-Dependent Assembly (CoDA), a platform for engineering ZFNs using only standard cloning techniques or custom DNA synthesis. Using CoDA ZFNs, we rapidly altered 20 genes in zebrafish, Arabidopsis, and soybean. The simplicity and efficacy of CoDA will enable broad adoption of ZFN technology and make possible large-scale projects focused on multi-gene pathways or genome-wide alterations
    corecore