211 research outputs found

    Shapes of the Nucleon

    Full text link
    Previously defined spin-dependent quark densities that are matrix elements of specific density operators in proton states of definite spin-polarization generally have an infinite variety of non-spherical shapes. The present application is concerned with both charge and matter densities. We show that the Gross & Agbakpe model nucleon harbors an interesting variety of non-spherical shapes.Comment: 8 pages 3 figure

    Shapes of the Proton

    Full text link
    A model proton wave function, constructed using Poincare invariance, and constrained by recent electromagnetic form factor data, is used to study the shape of the proton. Spin-dependent quark densities are defined as matrix elements of density operators in proton states of definite spin-polarization, and shown to have an infinite variety of non-spherical shapes. For high momentum quarks with spin parallel to that of the proton, the shape resembles that of a peanut, but for quarks with anti-parallel spin the shape is that of a bagel.Comment: 8 pages, 5 figures, to be submitted to Phys. Rev. C This corrects a few typos and explains some further connections with experiment

    Handling the Handbag Diagram in Compton Scattering on the Proton

    Full text link
    Poincare invariance, gauge invariance, conservation of parity and time reversal invariance are respected in an impulse approximation evaluation of the handbag diagram. Proton wave functions, previously constrained by comparison with measured form factors, that incorporate the influence of quark transverse and orbital angular momentum (and the corresponding violation of proton helicity conservation) are used. Computed cross sections are found to be in reasonably good agreement with early measurements. The helicity correlation between the incident photon and outgoing proton, KLLK_{LL}, is both large and positive at back angles. For photon laboratory energies of \le 6 GeV, we find that KLLALLK_{LL}\ne A_{LL}, DLL1D_{LL}\ne1, and that the polarization PP can be large.Comment: 9 pages, 6 figures. Replacement fixes some typos, improves references and figures. An error in Fig. 6 was corrected and related comments in the text change

    A dynamical chiral bag model

    Get PDF
    We study a dynamical chiral bag model, in which massless fermions are confined within an impenetrable but movable bag coupled to meson fields. The self-consistent motion of the bag is obtained by solving the equations of motion exactly assuming spherical symmetry. When the bag interacts with an external meson wave we find three different kinds of resonances: {\it fermionic}, {\it geometric}, and σ\sigma-resonances. We discuss the phenomenological implications of our results.Comment: Two columns, 11 pages, 9 figures. Submitted to Physical Review

    Analytical solution of the dynamical spherical MIT bag

    Get PDF
    We prove that when the bag surface is allowed to move radially, the equations of motion derived from the MIT bag Lagrangian with massless quarks and a spherical boundary admit only one solution, which corresponds to a bag expanding at the speed of light. This result implies that some new physics ingredients, such as coupling to meson fields, are needed to make the dynamical bag a consistent model of hadrons.Comment: Revtex, no figures. Submitted to Journal of Physics

    Nucleon Magnetic Moments Beyond the Perturbative Chiral Regime

    Get PDF
    The quark mass dependence of nucleon magnetic moments is explored over a wide range. Quark masses currently accessible to lattice QCD, which lie beyond the regime of chiral perturbation theory (chiPT), are accessed via the cloudy bag model (CBM). The latter reproduces the leading nonanalytic behavior of chiPT, while modeling the internal structure of the hadron under investigation. We find that the predictions of the CBM are succinctly described by the simple formula, \mu_N(m_\pi) = \mu^{(0)}_N / (1 + \alpha m_\pi + \beta m_\pi^2), which reproduces the lattice data, as well as the leading nonanalytic behavior of chiPT. As this form also incorporates the anticipated Dirac moment behavior in the limit m_\pi \to \infty, it constitutes a powerful method for extrapolating lattice results to the physical mass regime.Comment: Revised version accepted for publication includes a new section demonstrating extrapolations of lattice QCD result

    Comparison of Nucleon Form Factors from Lattice QCD Against the Light Front Cloudy Bag Model and Extrapolation to the Physical Mass Regime

    Get PDF
    We explore the possibility of extrapolating state of the art lattice QCD calculations of nucleon form factors to the physical regime. We find that the lattice results can be reproduced using the Light Front Cloudy Bag Model by letting its parameters be analytic functions of the quark mass. We then use the model to extend the lattice calculations to large values of Q^{2} of interest to current and planned experiments. These functions are also used to define extrapolations to the physical value of the pion mass, thereby allowing us to study how the predicted zero in G_{E}(Q^{2})/G_{M}(Q^{2}) varies as a function of quark mass.Comment: 31 pages, 22 figure

    A chiral bag model approach to delta electroproduction

    Get PDF
    Helicity amplitudes for the γNΔ\gamma^* N \to \Delta transition are calculated using the cloudy bag model. A correction for center-of-mass motion is carried out using a modified Peierls-Thouless projection method. This reduces the magnitude of the transition amplitudes at small momentum transfer and enhances them at modest momentum transfers. Our calculation shows that the pion cloud contributes substantially to the transition helicity amplitudes, with the final result giving reasonable agreement with the corresponding experimental values.Comment: 16 pages, 6 ps figures, revte

    Nucleon Charge Symmetry Breaking and Parity Violating Electron-Proton Scattering

    Get PDF
    The consequences of the charge symmetry breaking effects of the mass difference between the up and down quarks and electromagnetic effects for searches for strangeness form factors in parity violating electron scattering from the proton are investigated. The formalism necessary to identify and compute the relevant observables is developed by separating the Hamiltonian into charge symmetry conserving and breaking terms. Using a set of SU(6) non-relativistic quark models, the effects of the charge symmetry breaking Hamiltonian are considered for experimentally relevant alues of the momentum transfer and found to be less than about 1 percent. The charge symmetry breaking corrections to the Bjorken sum rule are also studied and shown to vanish in first-order perturbation theory.Comment: 35 pages, 9 figure

    The Flavor Asymmetry of the Nucleon Sea

    Get PDF
    We re-examine the effects of anti-symmetry on the anti-quarks in the nucleon sea arising from gluon exchange and pion exchange between confined quarks. While the effect is primarily to suppress anti-down relative to anti-up quarks, this is numerically insignificant for the pion terms.Comment: To appear in Phys. Rev.
    corecore