8 research outputs found

    Source rock/dispersed organic matter characterization-TSOP research subcommitee results

    Get PDF
    Because sedimentary organic matter consists of a diverse mixture of organic components with different properties, a combination of chemical and petrographic results offers the most complete assessment of source rock properties. The primary purpose of this Society for Organic Petrology (TSOP) subcommittee is to contribute to the standardization of kerogen characterization methods. Specific objectives include: (1) evaluation of the applications of different organic matter (petrographic) classifications and terminology, and (2) integration of petrographic and geochemical results. These objectives were met by completing questionnaires, and petrographic, geochemical and photomicrograph round-robin exercises. Samples that were selected for this study represent different petrographic and geochemical properties, and geologic settings to help identify issues related to the utilization of different classifications and techniques. Petrographic analysis of the organic matter was completed using both a prescribed classification and the individual classification normally used by each participant. Total organic carbon (TOC), Rock-Eval pyrolysis and elemental analysis were also completed for each sample. Significant differences exist in the petrographic results from both the prescribed and individual classifications. Although there is general agreement about the oil- vs gas-prone nature of the samples, comparison of results from individual classifications is difficult due to the variety of nomenclature and methods used to describe an organic matter assemblage. Results from the photomicrograph exercise document that different terminology is being used to describe the same component. Although variation in TOC and Rock-Eval data exists, geochemical results define kerogen type and generative potential. Recommendations from this study include: (1) A uniform organic matter classification must be employed, which eliminates complex terminology and is capable of direct correlation with geochemical parameters. (2) A standardized definition and nomenclature must be used for the unstructured (amorphous) organic matter category. Subdivisions of this generalized amorphous category are needed to define its chemical and environmental properties. (3) Standardized techniques including multimode illumination, types of sample preparations and data reporting will help eliminate variability in the type and amount of organic components reported

    Source rock/dispersed organic matter characterization-TSOP research subcommitee results

    Get PDF
    Because sedimentary organic matter consists of a diverse mixture of organic components with different properties, a combination of chemical and petrographic results offers the most complete assessment of source rock properties. The primary purpose of this Society for Organic Petrology (TSOP) subcommittee is to contribute to the standardization of kerogen characterization methods. Specific objectives include: (1) evaluation of the applications of different organic matter (petrographic) classifications and terminology, and (2) integration of petrographic and geochemical results. These objectives were met by completing questionnaires, and petrographic, geochemical and photomicrograph round-robin exercises. Samples that were selected for this study represent different petrographic and geochemical properties, and geologic settings to help identify issues related to the utilization of different classifications and techniques. Petrographic analysis of the organic matter was completed using both a prescribed classification and the individual classification normally used by each participant. Total organic carbon (TOC), Rock-Eval pyrolysis and elemental analysis were also completed for each sample. Significant differences exist in the petrographic results from both the prescribed and individual classifications. Although there is general agreement about the oil- vs gas-prone nature of the samples, comparison of results from individual classifications is difficult due to the variety of nomenclature and methods used to describe an organic matter assemblage. Results from the photomicrograph exercise document that different terminology is being used to describe the same component. Although variation in TOC and Rock-Eval data exists, geochemical results define kerogen type and generative potential. Recommendations from this study include: (1) A uniform organic matter classification must be employed, which eliminates complex terminology and is capable of direct correlation with geochemical parameters. (2) A standardized definition and nomenclature must be used for the unstructured (amorphous) organic matter category. Subdivisions of this generalized amorphous category are needed to define its chemical and environmental properties. (3) Standardized techniques including multimode illumination, types of sample preparations and data reporting will help eliminate variability in the type and amount of organic components reported

    The effect of minor to moderate biodegradation on C5 to C9 hydrocarbons in crude oils

    No full text
    1 page(s

    Biodegradation of low molecular weight hydrocarbons in Barrow Island crude oils

    No full text
    1 page(s

    Hydrocarbon characterization of resinite

    No full text

    Modeling Early Methane Generation in Coal

    No full text
    corecore