431 research outputs found

    Spin orientation of two-dimensional electron gas under intraband optical pumping

    Full text link
    The theory of spin orientation of two-dimensional (2D) electron gas has been developed for intrasubband indirect optical transitions. The monopolar optical orientation of electrons in the conduction band is caused by the indirect scattering with virtual intermediate states in the valence band and allowance for selection rules for interband transitions. The considered mechanism of optical orientation is shown to be in an inherent relation with the special Elliot-Yafet mechanism of electron spin relaxation induced by virtual interband scattering.Comment: 3 pages, 2 figures, Symposium "Nanostructures: Physics and Technology", St.Petersburg, Russia, 200

    Direct current driven by ac electric field in quantum wells

    Full text link
    It is shown that the excitation of charge carriers by ac electric field with zero average driving leads to a direct electric current in quantum well structures. The current emerges for both linear and circular polarization of the ac electric field and depends on the field polarization and frequency. We present a micoscopic model and an analytical theory of such a nonlinear electron transport in quantum wells with structure inversion asymmetry. In such systems, dc current is induced by ac electric field which has both the in-plane and out-of-plane components. The ac field polarized in the interface plane gives rise to a direct current if the quantum well is subjected to an in-plane static magnetic field.Comment: 6 pages, 3 figure

    Valley separation in graphene by polarized light

    Full text link
    We show that the optical excitation of graphene with polarized light leads to the pure valley current where carriers in the valleys counterflow. The current in each valley originates from asymmetry of optical transitions and electron scattering by impurities owing to the warping of electron energy spectrum. The valley current has strong polarization dependence, its direction is opposite for normally incident beams of orthogonal linear polarizations. In undoped graphene on a substrate with high susceptibility, electron-electron scattering leads to an additional contribution to the valley current that can dominate.Comment: 4+ pages, 2 figure

    Spin-orbit Hanle effect in high-mobility quantum wells

    Full text link
    We study the depolarization of optically oriented electrons in quantum wells subjected to an in-plane magnetic field and show that the Hanle curve drastically depends on the carrier mobility. In low-mobility structures, the Hanle curve is described by a Lorentzian with the width determined by the effective g-factor and the spin lifetime. In contrast, the magnetic field dependence of spin polarization in high-mobility quantum wells is nonmonotonic: The spin polarization rises with the magnetic field induction at small fields, reaches maximum and then decreases. We show that the position of the Hanle curve maximum can be used to directly measure the spin-orbit Rashba/Dresselhaus magnetic field.Comment: 4 pages, 3 figure

    Conversion of hole states by acoustic solitons

    Full text link
    The hole states in the valence band of a large class of semiconductors are degenerate in the projections of angular momentum. Here we show that the switching of a hole between the states can efficiently be realized by acoustic solitons. The microscopic mechanism of such a state conversion is related to the valence band splitting by local elastic strain. The conversion is studied here for heavy holes localized at shallow and deep acceptors in silicon quantum wells.Comment: 4 pages, 2 figure

    Photoexcitation of valley-orbit currents in (111)-oriented silicon metal-oxide-semiconductor field-effect transistors

    Get PDF
    We demonstrate the injection of pure valley-orbit currents in multivalley semiconductors and present the phenomenological theory of this effect. We studied photoinduced transport in (111)-oriented silicon metaloxide-semiconductor field effect transistors at room temperature. By shining circularly polarized light on exact oriented structures with six equivalent valleys, nonzero electron fluxes within each valley are generated, which compensate each other and do not yield a net electric current. By disturbing the balance between the valley fluxes, we demonstrate that the pure valley-orbit currents can be converted into a measurable electric current

    Experimental Separation of Rashba and Dresselhaus Spin-Splittings in Semiconductor Quantum Wells

    Get PDF
    The relative strengths of Rashba and Dresselhaus terms describing the spin-orbit coupling in semiconductor quantum well (QW) structures are extracted from photocurrent measurements on n-type InAs QWs containing a two-dimensional electron gas (2DEG). This novel technique makes use of the angular distribution of the spin-galvanic effect at certain directions of spin orientation in the plane of a QW. The ratio of the relevant Rashba and Dresselhaus coefficients can be deduced directly from experiment and does not relay on theoretically obtained quantities. Thus our experiments open a new way to determine the different contributions to spin-orbit coupling
    corecore