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The relative strengths of Rashba and Dresselhaus terms describing the spin-orbit coupling in
semiconductor quantum well (QW) structures are extracted from photocurrent measurements on
n-type InAs QWs containing a two-dimensional electron gas (2DEG). This novel technique makes
use of the angular distribution of the spin-galvanic effect at certain directions of spin orientation in the
plane of a QW. The ratio of the relevant Rashba and Dresselhaus coefficients can be deduced directly
from experiment and does not relay on theoretically obtained quantities. Thus our experiments open a
new way to determine the different contributions to spin-orbit coupling.
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FIG. 1. Schematic 2D band structure with k-linear terms for
C2v symmetry for different relative strengths of SIA and BIA
and the distribution of spin orientations at the 2D Fermi
energy: (a) The case of only Rashba or Dresselhaus spin-orbit
ample, both terms can cancel each other, resulting in a
vanishing spin splitting in certain k-space directions [17].

coupling. (d) The case of the simultaneous presence of both
contributions. Arrows indicate the orientation of spins.
The manipulation of the spin of charge carriers in
semiconductors is one of the key problems in the field
of spintronics (see, e.g., [1]). In the paradigmatic spin
transistor, e.g., proposed by Datta and Das [2], the elec-
tron spins, injected from a ferromagnetic contact into a
two-dimensional electron system are controllably rotated
during their passage from source to drain by means of the
Rashba spin-orbit coupling [3]. The coefficient �, which
describes the strength of the Rashba spin-orbit coupling,
and hence the degree of rotation, can be tuned by gate
voltages. This coupling stems from the inversion asym-
metry of the confining potential of two-dimensional
electron (or hole) systems. The dependence of � on the
gate voltage has been shown experimentally by analyzing
the beating pattern observed in Shubnikov–de Haas
(SdH) oscillations [4–10]. In addition to the Rashba cou-
pling, caused by structure inversion asymmetry (SIA),
also a Dresselhaus type of coupling contributes to the
spin-orbit interaction. The latter is due to bulk inversion
asymmetry (BIA) [11,12] and the interface inversion
asymmetry (IIA) [13,14]. The BIA and IIA contributions
are phenomenologically inseparable and described below
by the generalized Dresselhaus parameter �. Both
Rashba and Dresselhaus couplings result in spin splitting
of the band (Fig. 1) and give rise to a variety of spin
dependent phenomena that allow one to evaluate the
magnitude of the total spin splitting of electron subbands.

However, usually it is not possible to extract the relative
contributions of Rashba and Dresselhaus terms to the
spin-orbit coupling. To obtain the Rashba coefficient �,
the Dresselhaus contribution is normally neglected [5–
10]. At the same time, Dresselhaus and Rashba terms can
interfere in such a way that macroscopic effects vanish
though the individual terms are large [15,16]. For ex-
0031-9007=04=92(25)=256601(4)$22.50 
This cancellation leads to the disappearance of an anti-
localization [18], the absence of spin relaxation in spe-
cific crystallographic directions [15,19], and the lack of
SdH beating [16]. In a recent paper [20] the importance of
both Rashba and Dresselhaus terms was pointed out:
tuning � such that � � � holds, allows one to build a
nonballistic spin-field effect transistor.

Below we demonstrate that angular dependent mea-
surements of the spin-galvanic photocurrent [21,22]
2004 The American Physical Society 256601-1
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FIG. 2. Angular dependence of the spin-galvanic current (a)
and the geometry of the experiment (b),(c).
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allow one to separate contributions due to Dresselhaus
and Rashba terms. Here, we make use of the fact that
these terms contribute differently for particular crystal-
lographic directions. Hence, by mapping the magnitude
of the photocurrent in the plane of the quantum well
(QW) the ratio of both terms can be directly determined
from experiment.

Before turning to experiment we briefly summarize
the consequences of Rashba and Dresselhaus terms on
the electron dispersion and on the spin orientation of the
electronic states of the two-dimensional electron gas
(2DEG). We consider QWs of the zinc-blende structure
grown in the �001� direction. For the corresponding C2v
symmetry the spin-orbit part ĤHSO of the Hamiltonian
ĤH � �h2k2=2m� � ĤHSO contains the Rashba term as well
as the Dresselhaus term according to

ĤH SO � ��	xky � 	ykx� � ��	xkx � 	yky�; (1)

where k is the electron wave vector, and � is the vector of
the Pauli matrices. Here, the x axis is aligned along the
�100� direction, y is aligned along �010�, and z is the
growth direction (see Fig. 1). The Hamiltonian of Eq. (1)
contains only terms linear in k. As we show below, terms
cubic in k in our experiments change only the strength of
� leaving the Hamiltonian unchanged.

To illustrate the resulting energy dispersion in Fig. 1 we
plot the eigenvalues of ĤH, "�k�, and contours of constant
energy in the kx,ky plane for different ratios of � and �.
For � � 0; � � 0 and � � 0; � � 0 the dispersion has
the same shape and consists of two shifted parabolas in
all directions, displayed in Fig. 1(a). However, Rashba
and Dresselhaus terms result in a different pattern of the
eigenstate’s spin orientation in k space. The distribution
of this spin orientation can be visualized by writing the
spin-orbit interaction term in the form ĤHSO � � 	Beff�k�
where Beff�k� is an effective magnetic field that pro-
vides the relevant quantization axes [23]. By comparison
with Eq. (1) one obtains for pure Rashba (� � 0) and
pure Dresselhaus (� � 0) coupling the corresponding
effective magnetic fields, B�R�

eff � ��ky ;�kx� and B�D�
eff �

��kx ;�ky�, respectively. The spin orientations for Rashba
and Dresselhaus coupling are schematically shown in
Figs. 1(b) and 1(c) by arrows. Here it is assumed that � >
� > 0. For the Rashba case the effective magnetic field,
and hence the spin, is always perpendicular to the corre-
sponding k vector [Fig. 1(b)]. In contrast, for the
Dresselhaus contribution, the angle between the k vector
and spin depends on the direction of k. In the presence of
both Rashba and Dresselhaus spin-orbit couplings, rele-
vant for C2v symmetry, the �1�110� and the �110� axes
become strongly nonequivalent. For k k �1�110� the eigen-
values of the Hamiltonian are then given by " �
�h2k2=2m� � ��� ��jkj and for k k �110� by " �
�h2k2=2m� � ��� ��jkj. This anisotropic dispersion
"�k� is sketched in Fig. 1(d), and the corresponding con-
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tours of constant energy together with the spin orientation
of selected k vectors are shown in Fig. 1(e).

Angular dependent investigations of spin photocur-
rents provide a direct measure of the anisotropic orienta-
tion of spins in k space and hence of the different
contributions of the Rashba and the Dresselhaus terms.
We employ the spin-galvanic effect to extract the ratio of
the Rashba and the Dresselhaus contributions. The spin-
galvanic current is driven by the electron in-plane aver-
age spin Sk according to [17,21]

j SGE /
�
� ��
� ��

�
Sk: (2)

Therefore, the spin-galvanic current jSGE for a certain
direction of Sk consists of Rashba and Dresselhaus cou-
pling induced currents, jR and jD [see Fig. 2(a)]. Their
magnitudes are jR / �jSkj and jD / �jSkj, and their ratio
is

jR=jD � �=�: (3)

For Sk oriented along one of the cubic axes it follows
from Eq. (2) that the currents flowing along and perpen-
dicular to Sk are equal to jD and jR, respectively, yielding
experimental access to determine �=�.

The experiments are carried out on �001�-oriented
n-type heterostructures having C2v point symmetry.
InAs=Al0:3Ga0:7Sb single QW of 15 nm width with free
carrier densities of about 1:3� 1012 cm�2 and mobility at
room temperature �2� 104 cm2=�Vs� were grown by
molecular-beam epitaxy. Several samples of the same
batch were investigated at room temperature yielding
the same results. The sample edges are oriented along
the �1�110� and �110� crystallographic axes. Eight pairs of
contacts on each sample allow one to probe the photo-
current in different directions [see Fig. 2(b)]. For optical
spin orientation we use a high power pulsed molecular
far-infrared NH3 laser [24]. The linearly polarized radia-
tion at a wavelength 148 �m with a power of 10 kW is
modified to be circularly polarized by using a �=4 quartz
plate. The photocurrent jSGE is measured in unbiased
structures via the voltage drop across a 50 � load resistor
in a closed circuit configuration [17]. It is detected for
right (	�) and left (	�) handed circularly polarized
radiation. The spin-galvanic current jSGE, studied here,
is extracted after eliminating current contributions that
256601-2
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FIG. 3. Photocurrent in n-type InAs single QWs. Left plates
indicate three selected relations between spin polarization and
current contributions [after Eq. (2)]. Right plates show mea-
surements of the spin galvanic current as a function of angle .
Data are presented in polar coordinates. The magnitude of the
current measured at the radiation power of 10 kW is normalized
to the current maximum (jmax � 20 �A) obtained in the ge-
ometry of (c).
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are helicity independent [25]: jSGE � �j	�
� j	�

�=2.
Note that the spin-galvanic current is of the same order
as the background current (see [25]).

The nonequilibrium in-plane spin polarization Sk is
prepared as described recently [21]: Circularly polarized
light at normal incidence on the 2DEG plane, induces
indirect (Drude-like) electron transitions in the lowest
conduction subband of our n-type samples resulting in
a monopolar spin orientation [26] in the z direction
[Fig. 2(b)]. An in-plane magnetic field (B � 1 T) ro-
tates the spin around the magnetic field axis (precession)
and results in a nonequilibrium in-plane spin polariza-
tion Sk / !L�s, where!L is the Larmor frequency and �s
is the spin-relaxation time. In the range of the applied
magnetic field strength the spin-galvanic current in the
present samples at room temperature rises linearly with
B indicating !L�s < 1 and, thus, the Hanle effect is not
present (see [25]). The angle between the magnetic field
and Sk in general depends on details of the spin-
relaxation process. In the InAs QW structure investigated
here, the isotropic Elliot-Yafet spin-relaxation mecha-
nism dominates [15,27]. Thus the in-plane spin polariza-
tion Sk of photoexcited carriers is always perpendicular
to B and can be varied by rotating B around z as illus-
trated in Fig. 2(c). This excess spin polarization Sk leads
to an increase of the population of the corresponding
spin-polarized states. Because of asymmetric spin re-
laxation an electric current results [21].

To obtain the Rashba and Dresselhaus contributions
the spin-galvanic effect is measured for a fixed orienta-
tion of Sk for all accessible directions  [see Fig. 2(c)].
According to Eq. (2) the current jR always flows perpen-
dicularly to the spin polarization Sk, and jD encloses an
angle �2’ with Sk. Here ’ is the angle between Sk and
the x axis. Then, the current component along any direc-
tion given by angle  can be written as a sum of the
projections of jR and jD on this direction

jSGE� � � jD cos� � ’� � jR sin� � ’�: (4)

Three directions of spin population Sk are particularly
suited to extract the ratio between Rashba and
Dresselhaus terms. These geometries are sketched in
Figs. 3(a)–3(c), left column. In Fig. 3(a), the spin po-
lari-zation Sk is set along �100� (’ � 0). Then from
Eq. (4) follows that the currents along the �100� direction
� � 0� and the �010� direction ( � �=2) are equal to
jD and jR, respectively, as shown on the left hand side of
Fig. 3(a). Figure 3(b) illustrates another geometry. For a
nonequilibrium spin polarization induced along �110�
(’ � �=4) Eq. (4) predicts that the current has its maxi-
mum value j � jR � jD at  � 3�=4. If the spin is
aligned along �1�110� [’ � ��=4 in Fig. 3(c)], on the other
hand, the maximum current j � jR � jD is expected to
flow under an angle of  � �=4. Thus, the relative
strength of the measured jR � jD and jR � jD values
allows a straightforward determination of jR=jD � �=�.
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The results are shown in Fig. 3. The left hand side of
Fig. 3 displays the geometric arrangement discussed
above and shows the direction of the photogenerated
spins Sk and the resulting Rashba and Dresselhaus cur-
rents. The corresponding experimentally obtained cur-
rents measured in different directions are presented in
polar coordinates on the right hand side of the figure.
The current’s magnitude is normalized to the maximum
value of the spin-galvanic current obtained if Rashba
and Dresselhaus contributions point in the same direc-
tion [Fig. 3(c)]. The ratio of Rashba and Dresselhaus
currents can be directly read off from the right hand
side of Fig. 3(a), jR=jD � j��=2�=j�0�, or can be evalu-
ated from the maximum currents j in Figs. 3(b) and 3(c).
Both procedures give the same result: jR=jD � 2:15�
0:25. Moreover, all data on the right hand side of Fig. 3
are in excellent agreement with the picture given above:
Using�=� � 2:15, the three sets of the data points can be
fitted simultaneously by Eq. (4) without additional fitting
parameters.

The value of 2.15 agrees with theoretical results [28],
which predict a dominating Rashba spin-orbit coupling
for InAs QWs and is also consistent with recent experi-
ments [6,18]. For InGaAs QWs, having similar sample
parameters as the devices investigated here, �=� ratios
were obtained from weak antilocalization experiments
256601-3
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[18] and k 	 p calculations [29]. The corresponding values
ranged between 1.5–1.7 and 1.85, respectively. These
results are in good agreement with our findings. The ratio
of Rashba and Dresselhaus terms has previously been
estimated by means of Raman spectroscopy [30] and
transport investigations [18,31]. In contrast to these works
our method allows one to measure directly the relative
strength of Rashba and Dresselhaus terms and does not
require any additional theoretical estimations.

So far we have not addressed the role of a contribution
cubic in k in the Hamiltonian ĤHSO. This results in terms
proportional to k3 in the Hamiltonian, which vary with
the angle #k between k and the x axis. The angle appears
as a linear combination of first and third order harmonics,
i.e., as combinations of cos#k, sin#k and cos3#k, sin3#k
terms (see, for instance, [18,32]). The spin-galvanic ef-
fect, on the other hand, is related to only the first order
harmonics in the Fourier expansion of the nonequilibrium
electron distribution function [32]. Hence, a cubic con-
tribution leaves—for our photocurrent measurements—
the form of the Hamiltonian unchanged (though it modi-
fies the spin splitting [30–33]) but renormalizes only the
Dresselhaus constant �: The coefficient � � !hk2zi de-
scribing k-linear terms should be replaced by � �
!�hk2zi � k2=4�. Here ! is the bulk spin-orbit constant
and hk2zi is the averaged squared wave vector in the
growth direction (see, for instance, [18,32]).

In conclusion, we have shown that photocurrent mea-
surements provide a new way to extract direct infor-
mation on the different contributions to spin-orbit
coupling. We note that also the circular photogalvanic
effect [34] can be used to separate Rashba and
Dresselhaus contributions. The same qualitative result
for the ratio �=� was obtained [35]. In contrast to the
spin-galvanic effect applied here, where a small in-plane
magnetic field to prepare the necessary in-plane spin
orientation Sk is used, the circular photogalvanic effect
does not require an external magnetic field. The method
can also be used for other material systems like GaAs
quantum wells, where, instead of the isotropic Elliot-
Yafet spin-relaxation mechanism, the anisotropic
D’yakonov-Perel mechanism dominates. In this case the
anisotropy of the spin-relaxation process [15], which
results in an anisotropic spin distribution Sk, must be
taken into account.
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