630 research outputs found

    Thermodynamic properties of quadrupolar states in the frustrated pyrochlore magnet Tb2_2Ti2_2O7_7

    Get PDF
    The low-temperature thermodynamic properties of the frustrated pyrochlore Tb2+x_{2+x}Ti2x_{2-x}O7+y_{7+y} have been studied using the single crystal of x=0.005x=0.005 sitting in a long range ordered phase in the xx-TT phase diagram. We observed that the specific heat exhibits a minimum around 2 K and slightly increases on cooling, similar to a Schottky-like anomaly for canonical spin ices. A clear specific-heat peak observed at Tc=0.53T_{\rm c} = 0.53 K is ascribable to the phase transition to a quadrupolar state, which contributes to a relatively large change in entropy, S2.7S \simeq 2.7 J K1^{-1}mol1^{-1}. However, it is still smaller than Rln2R\ln2 for the ground state doublet of the Tb ions. The entropy release persists to higher temperatures, suggesting strong fluctuations associated with spin ice correlations above TcT_{\rm c}. We discuss the field dependence of the entropy change for H[111]H||[111] and H[001]H||[001].Comment: 6 pages, 2 figure

    Proton radiography to improve proton radiotherapy: Simulation study at different proton beam energies

    Get PDF
    To improve the quality of cancer treatment with protons, a translation of X-ray Computed Tomography (CT) images into a map of the proton stopping powers needs to be more accurate. Proton stopping powers determined from CT images have systematic uncertainties in the calculated proton range in a patient of typically 3-4\% and even up to 10\% in region containing bone~\cite{USchneider1995,USchneider1996,WSchneider2000,GCirrone2007,HPaganetti2012,TPlautz2014,GLandry2013,JSchuemann2014}. As a consequence, part of a tumor may receive no dose, or a very high dose can be delivered in healthy ti\-ssues and organs at risks~(e.g. brain stem)~\cite{ACKnopf2013}. A transmission radiograph of high-energy protons measuring proton stopping powers directly will allow to reduce these uncertainties, and thus improve the quality of treatment. The best way to obtain a sufficiently accurate radiograph is by tracking individual protons traversing the phantom (patient)~\cite{GCirrone2007,TPlautz2014,VSipala2013}. In our simulations we have used an ideal position sensitive detectors measuring a single proton before and after a phantom, while the residual energy of a proton was detected by a BaF2_{2} crystal. To obtain transmission radiographs, diffe\-rent phantom materials have been irradiated with a 3x3~cm2^{2} scattered proton beam, with various beam energies. The simulations were done using the Geant4 simulation package~\cite{SAgostinelli2003}. In this study we focus on the simulations of the energy loss radiographs for various proton beam energies that are clinically available in proton radiotherapy.Comment: 6 pages, 6 figures, Presented at Jagiellonian Symposium on Fundamental and Applied Subatomic Physics, 7-12 June, 2015, Krak\'ow, Polan

    Quadrupole order in the frustrated pyrochlore magnet Tb2Ti2O7

    Get PDF
    TMU International Symposium on "New Quantum Phases Emerging from Novel Crystal Structure" 24–25 September 2015, Tokyo, Japan.We have studied the hidden long-range order (LRO) of the frustrated pyrochlore magnet Tb2Ti2O7 by means of specific-heat experiments and Monte-Carlo (MC) simulations, which has been discussed as the LRO of quadrupole moments inherent to the non-Kramers ion of Tb3+. We have found that the sharp specific-heat peak is collapsed into a broad hump by magnetic fields above 0.3 T for H//[001]. This result, qualitatively reproduced by MC simulations, suggests that a field-induced magnetic state overcomes the quadrupolar LRO state, as a similar case of a classical spin ice. The present results support the interpretation that Tb2+xTi2-xO7+y is a unique material in the boundary between the quadrupolar (x >= x(c) = -0.0025) and spin-liquid (x <= x(c)) states, where the magnetic field along the [001] axis is a tuning parameter which induces the magnetic ordered state

    Simultaneous loss of interlayer coherence and long-range magnetism in quasi-two-dimensional PdCrO\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    Incoherent transport is an important feature of many anisotropic quantum materials but often its origin is not well understood. Here, the authors show that in a layered quantum magnet, incoherence is driven by the interaction of electrons with spin fluctuations after the

    Theoretical analysis of the experiments on the double-spin-chain compound -- KCuCl3_3

    Full text link
    We have analyzed the experimental susceptibility data of KCuCl3_3 and found that the data are well-explained by the double-spin-chain models with strong antiferromagnetic dimerization. Large quantum Monte Carlo calculations were performed for the first time in the spin systems with frustration. This was made possible by removing the negative-sign problem with the use of the dimer basis that has the spin-reversal symmetry. The numerical data agree with the experimental data within 1% relative errors in the whole temperature region. We also present a theoretical estimate for the dispersion relation and compare it with the recent neutron-scattering experiment. Finally, the magnitude of each interaction bond is predicted.Comment: 4 pages, REVTeX, 5 figures in eps-file

    Statistical Gaussian Model of Image Regions in Stochastic Watershed Segmentation

    No full text
    International audienceStochastic watershed is an image segmentation technique based on mathematical morphology which produces a probability density function of image contours. Estimated probabilities depend mainly on local distances between pixels. This paper introduces a variant of stochastic watershed where the probabilities of contours are computed from a Gaussian model of image regions. In this framework, the basic ingredient is the distance between pairs of regions, hence a distance between normal distributions. Hence several alternatives of statistical distances for normal distributions are compared, namely Bhattacharyya distance, Hellinger metric distance and Wasserstein metric distance

    Field-Induced Magnetic Order in Quantum Spin Liquids

    Full text link
    We study magnetic field-induced three-dimensional ordering transitions in low-dimensional quantum spin liquids, such as weakly coupled, antiferromagnetic spin-1/2 Heisenberg dimers and ladders. Using stochastic series expansion quantum Monte Carlo simulations, thermodynamic response functions are obtained down to ultra-low temperatures. We extract the critical scaling exponents which dictate the power-law dependence of the transition temperature on the applied magnetic field. These are compared with recent experiments on candidate materials and with predictions for the Bose-Einstein condensation of magnons obtained in mean-field theory.Comment: RevTex, 4 pages with 5 figure
    corecore