14,240 research outputs found
Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the C+Pb System at Near-Coulomb-Barrier Energies by using a Folding Potential
Simultaneous analyses are performed for elastic scattering and
fusion cross section data for the C+Pb system at
near-Coulomb-barrier energies by using the extended optical model approach in
which the polarization potential is decomposed into direct reaction (DR) and
fusion parts. Use is made of the double folding potential as a bare potential.
It is found that the experimental elastic scattering and fusion data are well
reproduced without introducing any normalization factor for the double folding
potential and also that both DR and fusion parts of the polarization potential
determined from the analyses satisfy separately the dispersion
relation. Furthermore, it is shown that the imaginary parts of both DR and
fusion potentials at the strong absorption radius change very rapidly, which
results in a typical threshold anomaly in the total imaginary potential as
observed with tightly bound projectiles such as -particle and O.Comment: 26 pages, 7 figures, submitted to Physical Review
Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the 7Li+208Pb System at Near-Coulomb-Barrier Energies using the Folding Potential
Simultaneous analyses previously made for elastic scattering and
fusion cross section data for the Li+Pb system is extended to the
Li+Pb system at near-Coulomb-barrier energies based on the
extended optical model approach, in which the polarization potential is
decomposed into direct reaction (DR) and fusion parts. Use is made of the
double folding potential as a bare potential. It is found that the experimental
elastic scattering and fusion data are well reproduced without introducing any
normalization factor for the double folding potential and that both the DR and
fusion parts of the polarization potential determined from the
analyses satisfy separately the dispersion relation. Further, we find that the
real part of the fusion portion of the polarization potential is attractive
while that of the DR part is repulsive except at energies far below the Coulomb
barrier energy. A comparison is made of the present results with those obtained
from the Continuum Discretized Coupled Channel (CDCC) calculations and a
previous study based on the conventional optical model with a double folding
potential. We also compare the present results for the Li+Pb system
with the analysis previously made for the Li+Pb system.Comment: 7 figures, submitted to PR
Reactively sputtered RuO2 diffusion barriers
The thermal stability of reactively sputtered RuO2 films is investigated from the point of view of their application as diffusion barriers in silicon contact metallizations with an Al overlayer. Backscattering spectra of Si/RuO2/Al samples and electrical measurements on shallow junction diodes with Si/TiSi2.3/RuO2/Al contacts both show that RuO2 films are effective diffusion barriers between Al and Si for 30-min annealing at temperatures as high as 600°C
Supersonic flow calculation using a Reynolds-stress and an eddy thermal diffusivity turbulence model
A second-order model for the velocity field and a two-equation model for the temperature field are used to calculate supersonic boundary layers assuming negligible real gas effects. The modeled equations are formulated on the basis of an incompressible assumption and then extended to supersonic flows by invoking Morkovin's hypothesis, which proposes that compressibility effects are completely accounted for by mean density variations alone. In order to calculate the near-wall flow accurately, correction functions are proposed to render the modeled equations asymptotically consistent with the behavior of the exact equations near a wall and, at the same time, display the proper dependence on the molecular Prandtl number. Thus formulated, the near-wall second order turbulence model for heat transfer is applicable to supersonic flows with different Prandtl numbers. The model is validated against flows with different Prandtl numbers and supersonic flows with free-stream Mach numbers as high as 10 and wall temperature ratios as low as 0.3. Among the flow cases considered, the momentum thickness Reynolds number varies from approximately 4,000 to approximately 21,000. Good correlation with measurements of mean velocity, temperature, and its variance is obtained. Discernible improvements in the law-of-the-wall are observed, especially in the range where the big-law applies
A near-wall four-equation turbulence model for compressible boundary layers
A near-wall four-equation turbulence model is developed for the calculation of high-speed compressible turbulent boundary layers. The four equations used are the k-epsilon equations and the theta(exp 2)-epsilon(sub theta) equations. These equations are used to define the turbulent diffusivities for momentum and heat fluxes, thus allowing the assumption of dynamic similarity between momentum and heat transport to be relaxed. The Favre-averaged equations of motion are solved in conjunction with the four transport equations. Calculations are compared with measurements and with another model's predictions where the assumption of the constant turbulent Prandtl number is invoked. Compressible flat plate turbulent boundary layers with both adiabatic and constant temperature wall boundary conditions are considered. Results for the range of low Mach numbers and temperature ratios investigated are essentially the same as those obtained using an identical near-wall k-epsilon model. In general, the numerical predictions are in very good agreement with measurements and there are significant improvements in the predictions of mean flow properties at high Mach numbers
Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Sections for 6Li + 208Pb System at Near-Coulomb-Barrier Energies by using Folding Potential
Based on the extended optical model approach in which the polarization
potential is decomposed into direct reaction (DR) and fusion parts,
simultaneous analyses are performed for elastic scattering and
fusion cross section data for the Li+Pb system at
near-Coulomb-barrier energies. A folding potential is used as the bare
potential. It is found that the real part of the resultant DR part of the
polarization potential is repulsive, which is consistent with the results from
the Continuum Discretized Coupled Channel (CDCC) calculations and the
normalization factors needed for the folding potentials. Further, it is found
that both DR and fusion parts of the polarization potential satisfy separately
the dispersion relation.Comment: 6 figure
WxN1–x alloys as diffusion barriers between Al and Si
Reactively sputtered tungsten nitride (WxN1–x) layers are investigated as diffusion barriers between Al overlayers and Si shallow n + -p junctions. Both amorphous W80 N20 and polycrystalline W60 N40 films were found to be very effective in preserving the integrity of the n + -p diodes for 30-min vacuum annealing up to 575 °C. Diode failure at higher temperatures is caused by localized penetration of Al into through the WxN1–x barriers. The effectiveness of the barrier decreases for polycrystalline W90 N10 and is worse for pure W
Quantifying the Dynamics of Bacterial Secondary Metabolites by Spectral Multiphoton Microscopy
Phenazines, a group of fluorescent small molecules produced by the bacterium Pseudomonas aeruginosa, play a role in maintaining cellular redox homeostasis. Phenazines have been challenging to study in vivo due to their redox activity, presence both intra- and extracellularly, and their diverse chemical properties. Here, we describe a noninvasive in vivo optical technique to monitor phenazine concentrations within bacterial cells using time-lapsed spectral multiphoton fluorescence microscopy. This technique enables simultaneous monitoring of multiple weakly fluorescent molecules (phenazines, siderophores, NAD(P)H) expressed by bacteria in culture. This work provides the first in vivo measurements of reduced phenazine concentration as well as the first description of the temporal dynamics of the phenazine-NAD(P)H redox system in Pseudomonas aeruginosa, illuminating an unanticipated role for 1-hydroxyphenazine. Similar approaches could be used to study the abundance and redox dynamics of a wide range of small molecules within bacteria, both as single cells and in communities
Nonequilibrium quantum criticality in bilayer itinerant ferromagnets
We present a theory of nonequilibrium quantum criticality in a coupled
bilayer system of itinerant electron magnets. The model studied consists of the
first layer subjected to an inplane current and open to an external substrate.
The second layer is closed and subject to no direct external drive, but couples
to the first layer via short-ranged spin exchange interaction. No particle
exchange is assumed between the layers. Starting from a microscopic fermionic
model, we derive an effective action in terms of two coupled bosonic fields
which are related to the magnetization fluctuations of the two layers. When
there is no interlayer coupling, the two bosonic modes possess different
dynamical critical exponents z with z=2 (z=3) for the first (second) layer.
This results in multi-scale quantum criticality in the coupled system. It is
shown that the linear coupling between the two fields leads to a low energy
fixed point characterized by the larger dynamical critical exponent z=3. The
perturbative renormalization group is used to compute the correlation length in
the quantum disordered and quantum critical regimes. We also derive the
stochastic dynamics obeyed by the critical fluctuations in the quantum critical
regime. Comparing the nonequilibrium situation to the thermal equilibrium
scenario, where the whole system is at a temperature T, we find that the
nonequilibrium drive does not always play the role of temperature.Comment: 20+ pages, 3 figures; Revised version as accepted by PRB, added
figure of mean field phase diagra
Excited D-branes and Supergravity Solutions
We investigate the general solution with the symmetry ISO(1,p)xSO(9-p) of
Type II supergravity (the three-parameter solution) from the viewpoint of the
superstring theory. We find that one of the three parameters (c_1) is closely
related to the ``dilaton charge'' and the appearance of the dilaton charge is a
consequence of deformations of the boundary condition from that of the boundary
state for BPS D-branes. We give three examples of the deformed D-branes by
considering the tachyon condensation from systems of D-\bar{D}p-branes,
unstable D9-branes and unstable D-instantons to the BPS saturated Dp-branes,
respectively. We argue that the deformed systems are generally regarded as
tachyonic and/or massive excitations of the open strings on Dp-\bar{D}p-brane
systems.Comment: 29 pages, 6 figures, LaTeX2e, typos corrected, references adde
- …