146 research outputs found

    Depth profiles of perpendicular and parallel strain in a GaAsxP1−x/GaP superlattice

    Get PDF
    Using double-crystal x-ray rocking curves, depth profiles of parallel and perpendicular strain were obtained in a GaAs0.14P0.86/GaP superlattice grown on a buffer layer on (100) GaP. Combining symmetric Fe Kα1 (400) and asymmetric Cu Kα1 (422) reflections, a constant parallel strain of 0.19% relative to the substrate was found throughout the superlattice and buffer layer. Relative to the substrate, the perpendicular strain was found to be 0.26% in the buffer, and 0.80% and −0.19% in the 176-Å-thick superlattice GaAsxP1−x and GaP layers, respectively. The strain profiles indicate the buffer is ~80% decoupled from the substrate by misfit dislocations near the buffer/substrate interface, and the lattice misfit in the superlattice is elastically accommodated by the epitaxial structure with a small shift in the average lattice constant relative to the equilibrium superlattice structure

    Structural study of GaSb/AlSb strained-layer superlattice

    Get PDF
    Owing to the lattice mismatch between GaSb and AlSb, a superlattice consisting of alternating layers of these materials will be strained. We have carried out ion-channeling measurements by backscattering of 1.76-MeV He ions, and present an experimental procedure and a data-analysis technique to measure the difference in strain between the two individual layers of the superlattice. The data analysis is based on computer simulations of channeling, the accuracy of which is supported by the many fine details of the experiments reproduced in the simulations. X-ray rocking-curve analysis yielded detailed profiles of strains in directions perpendicular and parallel to the surface. The x-ray value for the strain present at an unirradiated spot on the crystal is in excellent agreement with the value calculated by elasticity theory. In the bombarded region, the values of strain are less than the value calculated by elasticity theory. It appears that bombardment by the He ions reduced the strain by 50% and created lateral inhomogeneities in the crystal structure

    Dislocation Loop Formation and Growth under In Situ Laser and/or Electron Irradiation

    Get PDF
    Vacancies and interstitial atoms are primary lattice (point) defects that cause observable microstructural changes, such as the formation of dislocation loops and voids in crystalline solids. These defects' diffusion properties determine the phase stability and environmental resistibility of macroscopic materials under ambient conditions. Although in situ methods have been proposed for measuring the diffusion energy of point defects, direct measurement has been limited. In this study, we propose an alternative in situ method to measure the activation energy for vacancy migration under laser irradiation using a pulsed laser beam from a laser-equipped high-voltage electron microscope (laser-HVEM). We made in situ observations that revealed the formation and growth of vacancy dislocation loops in an austenitic stainless steel during laser irradiation. These loops continued to grow when thermal annealing was performed after laser irradiation at the same temperature. We anticipate that laser-HVEM will provide a new method for investigating lattice defects

    Catalyst composition and impurity-dependent kinetics of nanowire heteroepitaxy.

    Get PDF
    The mechanisms and kinetics of axial Ge-Si nanowire heteroepitaxial growth based on the tailoring of the Au catalyst composition via Ga alloying are studied by environmental transmission electron microscopy combined with systematic ex situ CVD calibrations. The morphology of the Ge-Si heterojunction, in particular, the extent of a local, asymmetric increase in nanowire diameter, is found to depend on the Ga composition of the catalyst, on the TMGa precursor exposure temperature, and on the presence of dopants. To rationalize the findings, a general nucleation-based model for nanowire heteroepitaxy is established which is anticipated to be relevant to a wide range of material systems and device-enabling heterostructures.S.H. acknowledges funding from ERC grant InsituNANO (No. 279342). A.D.G. acknowledges funding from the Marshall Aid Commemoration Commission and the National Science Foundation. C.D. acknowledges funding from the Royal Society. A portion of the research was also performed using EMSL, a national scientific user facility sponsored by the Department of Energy’s (DOE) Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. DOE under Contract DE-AC05-76RL01830. We gratefully acknowledge the use of facilities within the LeRoy Eyring Center for Solid State Science at Arizona State University. This work was performed in part at CINT, a U.S. DOE, Office of Science User Facility. The research was funded in part by the Laboratory Directed Research and Development Program at LANL, an affirmative action equal opportunity employer operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under Contract DE-AC52-06NA25396.This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Nano, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/nn402208p. Gamalski AD, Perea DE, Yoo J, Li N, Olszta MJ, Colby R, Schreiber DK, Ducati C, Picraux ST, Hofmann S, ACS Nano 2013, 7 (9), 7689–7697, doi:10.1021/nn402208
    corecore