33 research outputs found

    Paleobiology of titanosaurs: reproduction, development, histology, pneumaticity, locomotion and neuroanatomy from the South American fossil record

    Get PDF
    Fil: García, Rodolfo A.. Instituto de Investigación en Paleobiología y Geología. Museo Provincial Carlos Ameghino. Cipolletti; ArgentinaFil: Salgado, Leonardo. Instituto de Investigación en Paleobiología y Geología. General Roca. Río Negro; ArgentinaFil: Fernández, Mariela. Inibioma-Centro Regional Universitario Bariloche. Bariloche. Río Negro; ArgentinaFil: Cerda, Ignacio A.. Instituto de Investigación en Paleobiología y Geología. Museo Provincial Carlos Ameghino. Cipolletti; ArgentinaFil: Carabajal, Ariana Paulina. Museo Carmen Funes. Plaza Huincul. Neuquén; ArgentinaFil: Otero, Alejandro. Museo de La Plata. Universidad Nacional de La Plata; ArgentinaFil: Coria, Rodolfo A.. Instituto de Paleobiología y Geología. Universidad Nacional de Río Negro. Neuquén; ArgentinaFil: Fiorelli, Lucas E.. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica. Anillaco. La Rioja; Argentin

    Differences in amplification efficiency of standard curves in quantitative real-time PCR assays and consequences for gene quantification in environmental samples.

    No full text
    High and comparable efficiency values are the key for reliable quantification of target genes from environmental samples using real-time PCR. Therefore it was the aim of this study to investigate if PCR amplification efficiencies of plasmid DNA used for the calculation of standard curves (i) remain constant along a logarithmic scale of dilutions and (ii) if these values are comparable to those of DNA extracted from environmental samples. It could be shown that comparable efficiency values within the standards cannot be achieved using log scale serial dilutions and a comparison of gene copy numbers from DNA extracted from environmental samples and standard DNA extracted from plasmids is only possible in a very small interval

    Improved protocol for the simultaneous extraction and column-based separation of DNA and RNA from different soils.

    No full text
    We developed an improved protocol, allowing the simultaneous extraction of DNA and RNA from soil using phenol-chloroform with subsequent column-based separation of DNA and RNA (PCS). We compared this new approach with the well established protocol published by Griffiths et al. (2000), where DNA and RNA are separated by selective enzymatic digestions and two commercial kits used for DNA or RNA extraction, respectively, using four different agricultural soils. We compared yield and purity of the nucleic acids as well as abundance and diversity profiles of the soil bacterial communities targeting the nosZ gene via quantitative real-time PCR and terminal restriction fragment length polymorphism on DNA and RNA level. The newly developed protocol provided purer nucleic acid extracts compared to the used kit-based protocols. All protocols were suitable for DNA- and RNA-based gene quantification, however high variations between replicates were obtained for RNA samples using the original Griffiths protocol. Diversity patterns of nosZ were highly influenced by the extraction protocol used both on the DNA and RNA level. Finally, our data showed that the new protocol allows a simultaneous and reproducible extraction and separation of DNA and RNA, which were suitable for reliable analyses of gene and transcript copy numbers and diversity pattern

    Nitrogen turnover in soil and global change.

    No full text
    Nitrogen management in soils has been considered as key to the sustainable use of terrestrial ecosystems and a protection of major ecosystem services. However, the microorganisms driving processes like nitrification, denitrification, N-fixation and mineralization are highly influenced by changing climatic conditions, intensification of agriculture and the application of new chemicals to a so far unknown extent. In this review, the current knowledge concerning the influence of selected scenarios of global change on the abundance, diversity and activity of microorganisms involved in nitrogen turnover, notably in agricultural and grassland soils, is summarized and linked to the corresponding processes. In this context, data are presented on nitrogen-cycling processes and the corresponding microbial key players during ecosystem development and changes in functional diversity patterns during shifts in land use. Furthermore, the impact of increased temperature, carbon dioxide and changes in precipitation regimes on microbial nitrogen turnover is discussed. Finally, some examples of the effects of pesticides and antibiotics after application to soil for selected processes of nitrogen transformation are also shown

    Abundance of microbes involved in nitrogen transformation in the rhizosphere of Leucanthemopsis alpina (L.) Heywood grown in soils from different sites of the Damma glacier forefield.

    No full text
    Glacier forefields are an ideal playground to investigate the role of development stages of soils on the formation of plant-microbe interactions as within the last decades, many alpine glaciers retreated, whereby releasing and exposing parent material for soil development. Especially the status of macronutrients like nitrogen differs between soils of different development stages in these environments and may influence plant growth significantly. Thus, in this study, we reconstructed major parts of the nitrogen cycle in the rhizosphere soil/root system of Leucanthemopsis alpina (L.) HEYWOOD: as well as the corresponding bulk soil by quantifying functional genes of nitrogen fixation (nifH), nitrogen mineralisation (chiA, aprA), nitrification (amoA AOB, amoA AOA) and denitrification (nirS, nirK and nosZ) in a 10-year and a 120-year ice-free soil of the Damma glacier forefield. We linked the results to the ammonium and nitrate concentrations of the soils as well as to the nitrogen and carbon status of the plants. The experiment was performed in a greenhouse simulating the climatic conditions of the glacier forefield. Samples were taken after 7 and 13 weeks of plant growth. Highest nifH gene abundance in connection with lowest nitrogen content of L. alpina was observed in the 10-year soil after 7 weeks of plant growth, demonstrating the important role of associative nitrogen fixation for plant development in this soil. In contrast, in the 120-year soil copy numbers of genes involved in denitrification, mainly nosZ were increased after 13 weeks of plant growth, indicating an overall increased microbial activity status as well as higher concentrations of nitrate in this soil

    Comparison of lipid biomarker and gene abundance characterizing the archaeal ammonia-oxidizing community in flooded soils

    No full text
    In the last years, archaea have been identified as key players in global N cycling, especially in nitrification. Ammonia-oxidizing archaea (AOA) are postulated to belong to the new phylum Thaumarchaeota for which the lipid crenarchaeol should be specific. The ratios between two independent markers for AOA, the ammonia monooxygenase gene and crenarchaeol have been studied in different aerated soils, but so far not in flooded soils. This study investigated ammonia-oxidizing archaea in four paddy soils and a tidal wetland. Ratios were significantly higher in the paddy soils compared to the tidal wetland and in general higher as in upland soils, leading to the assumption that archaeal ammonia oxidizers different from crenarchaeol-containing Thaumarchaeota may play an important role in paddy soils. © 2011 Springer-Verlag
    corecore