500 research outputs found

    Hot Hole versus Hot Electron Transport at Copper/GaN Heterojunction Interfaces

    Get PDF
    Among all plasmonic metals, copper (Cu) has the greatest potential for realizing optoelectronic and photochemical hot-carrier devices, thanks to its CMOS compatibility and outstanding catalytic properties. Yet, relative to gold (Au) or silver (Ag), Cu has rarely been studied and the fundamental properties of its photoexcited hot carriers are not well understood. Here, we demonstrate that Cu nanoantennas on p-type gallium nitride (p-GaN) enable hot-hole-driven photodetection across the visible spectrum. Importantly, we combine experimental measurements of the internal quantum efficiency (IQE) with ab initio theoretical modeling to clarify the competing roles of hot-carrier energy and mean-free path on the performance of hot-hole devices above and below the interband threshold of the metal. We also examine Cu-based plasmonic photodetectors on corresponding n-type GaN substrates that operate via the collection of hot electrons. By comparing hot hole and hot electron photodetectors that employ the same metal/semiconductor interface (Cu/GaN), we further elucidate the relative advantages and limitations of these complementary plasmonic systems. In particular, we find that harnessing hot holes with p-type semiconductors is a promising strategy for plasmon-driven photodetection across the visible and ultraviolet regimes. Given the technological relevance of Cu and the fundamental insights provided by our combined experimental and theoretical approach, we anticipate that our studies will have a broad impact on the design of hot-carrier optoelectronic devices and plasmon-driven photocatalytic systems

    Hot Hole versus Hot Electron Transport at Copper/GaN Heterojunction Interfaces

    Get PDF
    Among all plasmonic metals, copper (Cu) has the greatest potential for realizing optoelectronic and photochemical hot-carrier devices, thanks to its CMOS compatibility and outstanding catalytic properties. Yet, relative to gold (Au) or silver (Ag), Cu has rarely been studied and the fundamental properties of its photoexcited hot carriers are not well understood. Here, we demonstrate that Cu nanoantennas on p-type gallium nitride (p-GaN) enable hot-hole-driven photodetection across the visible spectrum. Importantly, we combine experimental measurements of the internal quantum efficiency (IQE) with ab initio theoretical modeling to clarify the competing roles of hot-carrier energy and mean-free path on the performance of hot-hole devices above and below the interband threshold of the metal. We also examine Cu-based plasmonic photodetectors on corresponding n-type GaN substrates that operate via the collection of hot electrons. By comparing hot hole and hot electron photodetectors that employ the same metal/semiconductor interface (Cu/GaN), we further elucidate the relative advantages and limitations of these complementary plasmonic systems. In particular, we find that harnessing hot holes with p-type semiconductors is a promising strategy for plasmon-driven photodetection across the visible and ultraviolet regimes. Given the technological relevance of Cu and the fundamental insights provided by our combined experimental and theoretical approach, we anticipate that our studies will have a broad impact on the design of hot-carrier optoelectronic devices and plasmon-driven photocatalytic systems

    Theoretical predictions for hot-carrier generation from surface plasmon decay

    Get PDF
    Decay of surface plasmons to hot carriers finds a wide variety of applications in energy conversion, photocatalysis and photodetection. However, a detailed theoretical description of plasmonic hot-carrier generation in real materials has remained incomplete. Here we report predictions for the prompt distributions of excited ‘hot’ electrons and holes generated by plasmon decay, before inelastic relaxation, using a quantized plasmon model with detailed electronic structure. We find that carrier energy distributions are sensitive to the electronic band structure of the metal: ​gold and ​copper produce holes hotter than electrons by 1–2 eV, while ​silver and ​aluminium distribute energies more equitably between electrons and holes. Momentum-direction distributions for hot carriers are anisotropic, dominated by the plasmon polarization for ​aluminium and by the crystal orientation for noble metals. We show that in thin metallic films intraband transitions can alter the carrier distributions, producing hotter electrons in ​gold, but interband transitions remain dominant

    Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum

    Get PDF
    Malaria parasites use hemoglobin (Hb) as a major nutrient source in the intraerythrocytic stage, during which heme is converted to hemozoin (Hz). The formation of Hz is essential for parasite survival, but to date, the underlying mechanisms of Hb degradation and Hz formation are poorly understood. We report the presence of a ∼200-kDa protein complex in the food vacuole that is required for Hb degradation and Hz formation. This complex contains several parasite proteins, including falcipain 2/2', plasmepsin II, plasmepsin IV, histo aspartic protease, and heme detoxification protein. The association of these proteins is evident from coimmunoprecipitation followed by mass spectrometry, coelution from a gel filtration column, cosedimentation on a glycerol gradient, and in vitro protein interaction analyses. To functionally characterize this complex, we developed an in vitro assay using two of the proteins present in the complex. Our results show that falcipain 2 and heme detoxification protein associate with each other to efficiently convert Hb to Hz. We also used this in vitro assay to elucidate the modes of action of chloroquine and artemisinin. Our results reveal that both chloroquine and artemisinin act during the heme polymerization step, and chloroquine also acts at the Hb degradation step. These results may have important implications in the development of previously undefined antimalarials

    Cellular Automata with Synthetic Image A Secure Image Communication with Transform Domain

    Get PDF
        Image encryption has attained a great attention due to the necessity to safeguard confidential images. Digital documents, site images, battlefield photographs, etc. need a secure approach for sharing in an open channel. Hardware – software co-design is a better option for exploiting unique features to cipher the confidential images. Cellular automata (CA) and synthetic image influenced transform domain approach for image encryption is proposed in this paper. The digital image is initially divided into four subsections by applying integer wavelet transform. Confusion is accomplished on low – low section of the transformed image using CA rules 90 and 150. The first level of diffusion with consecutive XORing operation of image pixels is initiated by CA rule 42. A synthetic random key image is developed by extracting true random bits generated by Cyclone V field programmable gate array 5CSEMA5F31C6. This random image plays an important role in second level of diffusion. The proposed confusion and two level diffusion assisted image encryption approach has been validated through the entropy, correlation, histogram, number of pixels change rate, unified average change intensity, contrast and encryption quality analyses

    Structure and vibrational properties of carbon tubules

    Get PDF
    The structure of multilayered carbon tubules has been investigated by electron microscopy and X-ray diffraction. The structure of tubules is characterized by disorder in the stacking of cylindrical graphene sheets. Raman scattering measurements have been carried out in tubules and compared with graphite. The observed features in the Raman spectra in tubules can be understood in terms of the influence of disorder. The additional Raman modes predicted for single layer carbon tubules have not been observed
    • …
    corecore