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Abstract

Among all plasmonic metals, copper (Cu) has the greatest potential for realizing optoelectronic 

and photochemical hot-carrier devices, thanks to its CMOS compatibility and outstanding catalytic 

properties. Yet, relative to gold (Au) or silver (Ag), Cu has rarely been studied and the fundamental 

properties of its photoexcited hot carriers are not well understood. Here, we demonstrate that Cu 

nanoantennas on p-type gallium nitride (p-GaN) enables hot-hole-driven photodetection across the 

visible spectrum. Importantly, we combine experimental measurements of the internal quantum 

efficiency (IQE) with ab initio theoretical modelling to clarify the competing roles of hot-carrier energy 

and mean-free path on the performance of hot-hole devices above and below the interband threshold 

of the metal. We also examine Cu-based plasmonic photodetectors on corresponding n-type GaN 

substrates that operate via the collection of hot electrons. By comparing hot hole and hot-electron 

photodetectors that employ the same metal/semiconductor interface (Cu/GaN), we further elucidate 

the relative advantages and limitations of these complementary plasmonic systems. In particular, we 

find that harnessing hot holes with p-type semiconductors is a promising strategy for plasmon-driven 

photodetection across the visible and ultra-violet regimes. Given the technological relevance of Cu and 

the fundamental insights provided by our combined experimental and theoretical approach, we 

anticipate that our studies will have a broad impact on the design of hot-carrier optoelectronic devices 

and plasmon-driven photocatalytic systems. 

Keywords: plasmonics, hot carriers, photodetection, hot holes, p-type GaN, copper
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Noble metal nanostructures support surface plasmons across a wide spectral window spanning 

the ultraviolet to near-infrared regions of the electromagnetic spectrum. This strong light-matter 

interaction enables plasmonic-metal nanostructures to serve as optical nanoantennas capable of 

efficiently harvesting incident photons.1 These nanoantennas are often composed of metals such as 

Au,2,3 Ag,4,5 and more recently Al,6 while Cu has received relatively little attention.7,8 This deficiency of 

Cu-based systems is largely related to chemical instabilities arising from surface oxidation processes that 

eventually render the plasmonic metal into an oxide (i.e. Cu2O or CuO) under ambient conditions. 

Despite these challenges, there are several potential advantages associated with using metallic Cu for 

the plasmonic element in a device architecture. As an earth-abundant metal that is fully CMOS-

compatible, Cu-based nanoantennas could facilitate widespread implementation of plasmonic 

components into a broad array of optoelectronic devices.9 Cu also exhibits catalytic activity for a variety 

of chemical reactions,10,11 offering numerous opportunities for plasmon-driven photochemistry. This 

auspicious combination of tunable optoelectronic properties coupled with diverse catalytic behavior 

suggests that Cu nanostructures have the potential to broadly impact advancements in photodetection 

and photocatalysis. To fulfill these promises, however, requires an improved understanding of the 

fundamental properties of photo-excited hot carriers in Cu nanostructures. 

Optical excitation of metallic nanostructures, either via plasmon-assisted indirect transitions (sp-

band to sp-band) or direct interband transitions (d-band to sp-band), generates highly-energetic “hot” 

carriers above (electrons) and below (holes) the metal Fermi level (EF)12 (Figure 1a).  Prompt collection 

of these hot carriers from the metal can be used to either generate a photocurrent via injection into an 

adjacent semiconductor or drive a chemical reaction via injection into a molecular orbital of an 

adsorbate.13–16 To overcome the fast relaxation rates of hot carriers in the metal, charge separation is 

typically accomplished by ultrafast charge injection across an interfacial Schottky barrier (ΦB) established 

at a metal/semiconductor heterojunction3,17 (Figure 1b). However, only those carriers that reach the 

metal/semiconductor interface with the appropriate momentum (k) and energy (E) can surmount the 

Schottky barrier.18,19 Therefore, the energy-dependent mean-free path (lmfp) of photo-excited hot 

carriers, along with their initial energy and momentum distributions, are all important parameters that 

govern the overall efficiency of plasmonic hot-carrier devices.12 
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Figure 1: Optical Generation and Collection of Hot Holes in Metals. a) Hot carriers can be generated in a metal 

through either indirect, intraband transitions between sp-band levels involving a phonon (empty circles) or 

through direct, interband transitions from the d-band up to the sp-band (solid circles). b) Qualitative band-

alignment diagram at a metal/p-type semiconductor heterojunction, denoting the conduction band (CB), valence 

band (VB), and band gap (EG) of the semiconductor along with the Fermi level (EF) of the overall system. Hot holes 

generated in the metal differ in their energy as well as their mean-free path. In particular, hot holes from interband 

transitions (d-band to sp-band) have higher energies and shorter mean-free paths than hot holes generated via 

intraband (sp-band to sp-band) transitions. These two properties determine the overall probability of the hot hole 

reaching the metal/semiconductor interface and then being injected over the Schottky barrier (ΦB) to eventually 

be collected by the p-type semiconductor. 
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Ab initio theoretical calculations indicate that in d-band metals, like Au and Cu, photo-excitation 

above the interband threshold generates a favorable distribution of high-energy hot holes with a peak 

in probability close to that of the incident photon energy.12 This feature of hot-hole energy distributions 

is in stark contrast to that of hot electrons, in which interband transitions yield a distribution that remains 

highly localized near the metal Fermi level.12,20,21 It is therefore anticipated that hot-hole generation via 

interband transitions will offer substantial improvements in the generation of highly-energetic hot 

carriers at visible frequencies where the production of high-energy hot electrons begins to taper off.20 

While promising, it is often argued that the short mean-free path of d-band holes substantially restricts 

their mobility and thereby limits their collection efficiency across an interface (Figure 1). Despite their 

expected low velocities and short lifetimes,12 it has been demonstrated that hot holes can be collected 

from the d-bands of Au and Cu nanoparticles via injection into the valence band of p-type 

semiconductors.22–24 Interestingly for the case of Cu nanostructures, it has recently been shown that d-

band holes close to the band edge exhibit relatively-long lifetimes that can even exceed those of sp-band 

electrons.8,25 Thus, hot-hole devices composed of Cu nanostructures could present significant 

advantages for efficient photodetection in the visible regime. To date, however, only a few hot-hole-

driven photodetectors have been reported.17-22 These devices primarily employ semiconductors with 

relatively small bandgaps (e.g. Si), limiting their operation to the near-infrared regime where photo-

excitation of hot holes originates from the sp-band of the metal.26–31 Plasmonic photodetectors capable 

of functioning throughout the visible spectrum via collection of hot holes from the metal d-bands have 

yet to be demonstrated.  Moreover, the non-parabolic nature of the d-bands limits the applicability of 

simple injection models,32 such as Fowler theory,18,19 for modeling the collection of hot holes across a 

metal/semiconductor heterojunction. Indeed, an appropriate model for hot-hole injection above the 

interband threshold of the plasmonic metal remains elusive due to the failure of the parabolic-band 

approximation to properly describe hot holes in the metal d-bands.32 As a result, very little is known 

about the fundamental processes governing the transport and collection of hot holes from metal 

nanostructures. Experimentally quantifying the internal quantum efficiency (IQE) of hot-hole injection 

across a metal/semiconductor interface is therefore critical to clarify the potential opportunities and 

technological limitations of hot-hole devices. 
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Here, we study solid-state plasmonic Schottky photodiodes composed of Cu nanoantennas on p-

type GaN (p-GaN) substrates that operate via the collection of hot holes across the entire visible regime 

(  = 1.6 – 2.8 eV). This spectral range spans both the intra- and interband regimes of Cu, allowing ℏ𝜔

careful study of how the incident photon energy and the metal band structure govern the initial 

generation and subsequent collection of hot holes across the metal/semiconductor interface. Combining 

the experimentally determined internal quantum efficiency (IQE) of hot-hole-driven photodetection 

with ab initio theoretical modeling of hot-hole generation, transport, and injection across the Cu/p-GaN 

interface reveals the competing effects of hot hole energy and mean-free path in determining the 

operating efficiency of plasmonic devices. We also examine Cu-based plasmonic photodetectors on 

corresponding n-type GaN substrates that operate via hot-electron injection. This complementary 

system provides a more general understanding of how the subtle interplay between hot-carrier energy 

and mean-free path impacts the IQE of hot-carrier devices across the visible spectrum. These combined 

studies reveal that the IQE of hot-electron devices decreases upon exceeding the interband threshold of 

the metal, while that of hot-hole devices eventually increases as the favorable energy distribution of d-

band holes ultimately overcomes the reduced mean-free path. Taken together, our results provide 

general guidelines for the construction of hot-carrier devices with improved collection efficiency and will 

help expand the use of hot-hole-driven devices for photodetection and plasmon-driven photocatalysis. 
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Results and Discussion

Realization of plasmonic photodetectors that operate across the visible regime via hot-hole 

injection requires a wide bandgap p-type semiconductor support to ensure that any observed 

photoresponse originates solely from absorption in the metal nanoantenna.33 In addition, effective 

charge separation at the metal/semiconductor interface requires the formation of a sizable Schottky-

barrier (ΦB) and hence proper band-alignment between the two materials.3 Our experimental platform 

consists of an array of ultrathin (t = 20 – 30 nm) Cu nanoantennas (Figure 2a) fabricated on top of a p-

type (Mg-doped) GaN epi-film (4 ± 1 μm thick) on a sapphire substrate (see Methods and Supporting 

Information Figure S1). We use p-GaN as the semiconductor support due to its large optical band gap (EG 

~3.4 eV),22 which excludes visible-light absorption within p-GaN and allows for unambiguously assigning 

the responsivity of the Cu/p-GaN device to hot-hole injection from the Cu nanoantennas. The p-GaN 

substrate permits hot-hole conduction while also possessing favorable band alignment33 relative to the 

Cu Fermi level that enables the formation of an interfacial Schottky barrier across the Cu/p-GaN 

heterojunction. As an added benefit, we are also able to obtain n-type GaN (n-GaN) for complementary 

studies of plasmon-driven hot-electron collection, providing an ideal experimental platform for studying 

the effects of both hot holes and hot electrons from the same metal with the same semiconductor. The 

nanoantennas were fabricated from Cu because it supports surface plasmon excitations across a broad 

spectral range while also being CMOS-compatible with on-chip optoelectronics. The metal thickness was 

chosen to minimize the transport distance for hot holes from the metal without sacrificing the overall 

absorption of incident light within the nanoantenna.33 No interfacial adhesion layer was used to 

construct the Cu/p-GaN heterojunction, excluding parasitic optical absorption from transition-metal 

adhesion layers (i.e. Ti or Cr) commonly used at the metal/semiconductor interface. The presence of an 

interfacial Schottky barrier (ΦB ~1.6 eV) at the Cu/p-GaN heterojunction was confirmed by 

photoresponsivity measurements (see Supporting Information Figure S2).  An Ohmic contact to p-GaN 

was achieved through deposition of a Ni/Au alloy as previously described,22 which completes the 

plasmonic Schottky photodiode by enabling photocurrent collection via two micro-contact probes during 

illumination of the device (see Methods). 

As recently demonstrated,33 analysis of the experimental internal quantum efficiency (IQE) 

spectrum of a plasmonic photodetector can provide deeper insight into the mechanisms controlling the 
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generation, transport, and injection of hot carriers across the metal/semiconductor interface. We thus 

performed IQE measurements on our Cu/p-GaN photodiodes to understand the performance of the 

device as a function of the incident wavelength ( ) or photon energy ( ). To obtain the IQE( ) 𝜆 ℏ𝜔 ℏ𝜔

spectrum, we first perform accurate measurements of the absorption spectrum A( ) and external 𝜆

quantum efficiency EQE( ) spectrum (Figure 2b) of the device using a custom-built experimental setup ℏ𝜔

(see Methods). Fabry-Perot interferences in the high-refractive index GaN epi-layer give rise to the 

observed fringes in the spectra shown in Figure 2. The surface plasmon resonance of the Cu 

nanoantennas appears as a broad absorption peak around 800 nm (Figure 2b, grey curve). This spectral 

assignment is verified by comparison with unpatterned Cu films, which lack any absorption feature at 

longer wavelengths (Supporting Information Figure S1). Alternatively, the increased absorption for 

wavelengths shorter than 600 nm (  ≥ 2 eV) is associated with interband transitions in the Cu film ℏ𝜔

(Figure 2b, grey curve and Figure S1). The EQE( ) spectrum of the device (Figure 2b, red curve) is ℏ𝜔

obtained by performing wavelength-dependent photocurrent measurements under monochromatic 

illumination with polarization perpendicular to the nanoantenna (see Methods). First, we record 

photocurrent maps from the Cu/p-GaN device at a particular wavelength to verify the spatial uniformity 

of the nanoantenna structure (Supporting Information Figure S2). Next, we measure the photocurrent 

spectrum at several positions within the nanoantenna array to obtain the EQE( ) of the hot-hole device ℏ𝜔

(Figure 2b, red curve). The EQE( ) of the Cu/p-GaN photodiode increases throughout the entire visible ℏ𝜔

spectrum, but rises much more rapidly beyond 2.4 eV. As a control experiment, no photocurrent was 

obtained from the bare p-GaN substrate in the absence of Cu nanoantennas (Supporting Information 

Figure S2). We therefore attribute the entire EQE( ) spectrum observed from the Cu/p-GaN ℏ𝜔

photodiode to the injection of hot holes from the Cu nanoantenna into the p-GaN support.  The IQE( ) ℏ𝜔

spectrum of the Cu/p-GaN device is then obtained by normalizing the EQE( ) by the absorption ℏ𝜔

spectrum (see Methods).  As shown in Figure 2c (solid red curve), the IQE( ) spectrum of the Cu/p-GaN ℏ𝜔

device exhibits a non-monotonic behavior. The IQE gradually increases across the visible spectrum until 

the interband threshold of Cu is reached at approximately 2.05 eV, at which point a small peak in IQE is 

clearly observed. After passing the interband threshold of Cu, there is a very slight decline in IQE before 

a steep increase is observed at higher photon energies (  > 2.4 eV) (Figure 2c, solid red curve). This ℏ𝜔

close correlation between the IQE spectral features and the interband threshold of Cu indicates that the 
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transition from entirely intraband plasmon-assisted excitations to primarily interband excitation exerts 

a significant influence on the internal device physics of the Cu/p-GaN photodiode. 

Figure 2: Photodetection with Plasmonic Cu/GaN Schottky Photodiodes. a) The Cu/p-GaN photodetector 

geometry and band alignment; b) Experimental EQE (red curve) and absorption spectra (grey curve) of the Cu/p-

GaN photodetector; c) Experimental IQE spectrum (solid red curve) of the Cu/p-GaN photodetector as a function 

of incident photon energy along with the theoretically-predicted IQE spectrum (dashed red curve) assuming a 

simple Fowler model. d) The Cu/n-GaN photodetector geometry and band alignment; e) Experimental EQE (blue 

curve) and absorption spectra (grey curve) of the Cu/n-GaN photodetector; f) Experimental IQE spectrum (solid 

blue curve) of the Cu/n-GaN photodetector as a function of incident photon energy along with the theoretically-

predicted IQE spectrum (dashed blue curve) assuming a simple Fowler model. The vertical dashed gray line in 

panels (c) and (f) indicates the interband threshold of the Cu nanoantenna, signifying the transition from entirely 

intraband excitations to an interband-dominated excitation regime for hot-carrier generation in Cu nanoantennas.
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To gain a more complete understanding of hot-carrier energetics at the Cu/GaN interface, we 

also fabricated similar plasmonic Cu nanoantennas on n-type GaN (n-GaN) substrates (Figure 2d). Note 

that this plasmonic Cu/n-GaN device operates via the collection of hot electrons instead of hot holes, 

and therefore provides a complementary experimental platform to the Cu/p-GaN device. We also 

emphasize that no interfacial adhesion layer was used at the Cu/n-GaN heterojunction, ensuring that 

the metal/semiconductor interface is identical to the Cu/p-GaN device. The interfacial Schottky barrier 

at the Cu/n-GaN heterojunction is around 0.9 eV (Supporting Information Figure S3). Figure 2e shows 

the absorption spectrum A( ) and the EQE( ) spectrum from the plasmonic Cu/n-GaN photodetector. 𝜆 ℏ𝜔

The EQE( ) spectrum increases monotonically from 1.6 eV up to a peak around 2 eV, then decreases ℏ𝜔

across a narrow energy range (2 – 2.3 eV), before again increasing at higher photon energies (  > 2.4 ℏ𝜔

eV). We can exclude any contributions from the underlying n-GaN support to the observed EQE( ) ℏ𝜔

spectrum, as no photocurrent was obtained from the bare n-GaN substrate in the absence of the Cu 

nanoantennas (Supporting Information Figure S3). The obtained IQE( ) spectrum of the Cu/n-GaN ℏ𝜔

photodiode (Figure 2f) is very different from that of the Cu/p-GaN device that collects hot holes. In 

particular, Cu/n-GaN devices exhibit an abrupt decline in IQE( ) around 2 eV that remains relatively ℏ𝜔

constant from around 2.2 eV up to 2.8 eV (Figure 2f). To reconcile the significant differences in IQE( ) ℏ𝜔

between Cu/p-GaN (Figure 2c, solid red curve) and Cu/n-GaN (Figure 2f, solid blue curve) requires careful 

analysis of the various electronic processes that determine the IQE( ) spectrum of hot carrier devices.  ℏ𝜔
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Figure 3: Ab Initio Calculations of Hot Carriers in Cu Nanoantennas. a) Probability of generating hot carriers (Pgen) 

in Cu at different photon energies below (1.6 eV) and above (2.05 eV, 2.2 eV, 2.4 eV) the interband threshold of 

Cu. The carrier energies are referenced to the Cu Fermi level located at 0 eV. Negative values of hot-carrier energy 

correspond to hot holes (left side) and positive values correspond to hot electrons (right side). The vertical gray 

lines denote the threshold energy (as determined by Schottky barriers, ΦB) for injection of hot holes and hot 

electrons across the Cu/p-GaN (ΦB ~ 1.6 eV) and Cu/n-GaN interface (ΦB ~ 0.9 eV), respectively. The grey portion 

of the curves in each panel demarcates the carriers that cannot be collected across the Schottky barrier for either 

device. The red (blue) portion of the curves shows the fraction of hot holes (hot electrons) that can be collected. 

b) Injection probability (Pinj) of hot holes (red) and hot electrons (blue) across the Cu/p-GaN and Cu/n-GaN 

interface, respectively, as a function of carrier energy assuming a simple Fowler model employing the parabolic-

band approximation. c) Mean-free path (lmfp) of hot carriers in Cu as a function of their energy relative to the Cu 
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Fermi level at 0 eV. Red (blue) portions of the distribution correspond to the fraction of hot holes (electrons) that 

have sufficient energy to inject across their respective Schottky barriers at the metal/semiconductor interface. 

The IQE(  of a plasmonic photodetector is determined by both the energy distribution of the ℏ𝜔)

generated hot carriers, , and their injection probability, , which accounts for their 𝑃gen(𝜀,ℏω) 𝑃inj(𝜀)

transport to, and subsequent transfer across, the metal/semiconductor interface, according to the 

following expression:

                                                    (1)𝐼𝑄𝐸(ℏ𝜔) =  ∫ℏ𝜔
𝛷𝐵

𝑃gen(𝜀,ℏ𝜔)𝑃inj(𝜀)𝑑𝜀

where  is the photon energy and ε is the energy of the hot carrier with respect to the metal Fermi ℏω

level (EF). Experimentally measuring the IQE( ) spectrum of a hot-carrier photodetector thus enables ℏ𝜔

the use of theory to unravel the microscopic details governing the behavior of the device.33 We first 

analyze the influence of the  function on the IQE( ) spectral features observed for the Cu/p-𝑃gen(𝜀,ℏω) ℏ𝜔

GaN and Cu/n-GaN devices. Using previously developed ab initio methods,12 we compute the probability 

of generating hot carriers, , with a given energy  relative to the Fermi level ( ) as 𝑃gen(𝜀,ℏω) 𝜀 𝜀 = 𝐸 ― 𝐸𝐹

a function of the incident photon energy  (Figure 3a). Positive values of  correspond to hot electrons  ℏ𝜔 𝜀

and negative values to hot holes. The colored portion of the curves in Figure 3a denote the subset of hot 

holes (red) and hot electrons (blue) with energies in excess of their respective Schottky barriers (vertical 

gray lines) at the Cu/p-GaN (ΦB ~ 1.6 eV) and Cu/n-GaN (ΦB ~ 0.9 eV) interface. In agreement with prior 

theoretical predictions,12,34 we observe a dramatic shift in the shape of  upon crossing the 𝑃gen(𝜀,ℏω)

interband threshold of Cu at around 2.1 eV. For purely intraband (sp-band to sp-band) plasmon-assisted 

transitions, the energy distributions for both hot electrons and hot holes exhibit nearly uniform 

probabilities from the Fermi level up to the photon energy. As the photon energy increases, the 

maximum hot carrier energies increase while the uniform probability decreases (Figure 3a). Above the 

interband threshold of Cu (  ≥ 2.1 eV), the hot-carrier distributions become highly peaked in ℏ𝜔

probability within a narrow range of energies, consisting of highly-energetic hot holes far below the Cu 

EF and hot electrons with much less energy located just above the Cu EF. Thus, interband transitions in 
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Cu preferentially generate high-energy hot holes ( ) and low-energy hot electrons ( ), 𝜀 ≪ 0 𝜀 ≳ 0

consistent with prior observations. 20,33,34 

The previous analysis of the  distribution can partly explain the differences in IQE( ) 𝑃gen(𝜀,ℏω) ℏ𝜔

spectra for the Cu/p-GaN and Cu/n-GaN devices, since the onset of interband transitions in the metal 

exerts opposite effects on the hot hole and hot electron energy distributions relative to the interfacial 

Schottky barrier. As shown in Figure 3a, the vast majority of hot electrons in Cu/n-GaN do not have 

sufficient energy to overcome the interfacial Schottky barrier for  > 2.1 eV. In contrast, a large ℏ𝜔

proportion of hot holes in the Cu/p-GaN device exhibit energies in excess of the Schottky barrier for  ℏ𝜔

> 2.1 eV and should be injected. This analysis of hot-carrier energy distributions relative to the Schottky 

barrier suggests that the transition from intraband to interband excitations will result in an abrupt drop 

in IQE( ) for hot-electron devices and an abrupt increase in IQE( ) for hot-hole devices. While this ℏ𝜔 ℏ𝜔

prediction is correct for the Cu/n-GaN device (Figure 2f), which exhibits a sharp drop in IQE( ) around ℏ𝜔

2.1 eV, it is inaccurate for the Cu/p-GaN device (Figure 2c). Interestingly, the increase in IQE( ) for the ℏ𝜔

Cu/p-GaN device does not coincide with the onset of the interband dominated regime, but is actually 

delayed to higher photon energies (  > 2.4 eV). As a result, the observed dip in IQE( ) spanning from ℏ𝜔 ℏ𝜔

around 2 to 2.3 eV (Figure 2c) cannot be reconciled with an interpretation based solely on the energy 

distribution of hot holes. To explain the behavior of the Cu/p-GaN device therefore requires a closer 

understanding of the properties of photo-excited hot holes and, in particular, their injection mechanism 

across the metal/semiconductor interface.

While the  distribution can be obtained with ab initio calculations that accurately 𝑃gen(𝜀,ℏω)

account for the metal band structure,12 the  function is typically estimated with a semiclassical 𝑃inj(𝜀)

Fowler model.19 This approach is based on a parabolic-band approximation for the electronic structure 

of both the metal and the semiconductor.19 The Fowler model also asserts that hot carriers must 

conserve their energy upon crossing the Schottky barrier, which requires conservation of momentum 

tangential to the metal/semiconductor interface. These momentum-matching constraints define a 

narrow escape cone for transmission into the semiconductor, entailing significant reflection losses at the 

interface. Overall, the Fowler model3,14,18 predicts an injection efficiency that grows quadratically with 

respect to the difference between the hot-carrier energy and the Schottky barrier height: 𝑃inj(𝜀) ∝
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. Since hot carrier mean-free paths (lmfp) are usually commensurate with the nanoscale (𝜀 ― ΦB)2

dimensions of the plasmonic nanoantenna, we initially neglect transport effects. As shown in Figure 3b, 

 increases monotonically with hot carrier energy above the Schottky barrier (ΦB) both for hot 𝑃inj(𝜀)

electrons (blue portion of the curve) and hot holes (red portion of the curve).  Accordingly, we observe 

that  rapidly increases beyond 1.6 eV in Cu/p-GaN and beyond 0.9 eV in Cu/n-GaN (Figure 3b). 𝑃inj(𝜀)

Ab initio calculations of electron-electron and electron-phonon scattering12 were also performed 

to calculate the mean-free path (lmfp) of hot carriers as a function of energy above (electrons) and below 

(holes) the Cu Fermi level (Figure 3c). The color scale denotes the fraction of hot holes (red points) and 

hot electrons (blue points) with energies in excess of their respective Schottky barriers at the 

metal/semiconductor interface. For both holes and electrons, our calculations predict a decrease in lmfp 

with increasing carrier energy; note that the lmfp is plotted on a log scale in Figure 3c. Notably, however, 

there is a substantial asymmetry in lmfp between these hot carriers. For instance, our ab initio calculations 

predict a lmfp of around 1–3 nm for a hot hole 2 eV below the Cu EF, while a hot electron with similar 

energy above the Cu EF exhibits a lmfp of around 8–20 nm (Figure 3c). The much shorter lmfp of hot holes 

relative to hot electrons suggests that transport effects should be considered for hot-hole-driven 

devices. Indeed, in the following sections we will show that the energy-dependent lmfp of hot holes exerts 

a significant influence on the spectral response of the Cu/p-GaN photodiode.

Combining the ab initio-calculated  distributions with the Fowler  function 𝑃gen(𝜀,ℏω) 𝑃inj(𝜀)

described above, we can now evaluate equation 1 to compute the predicted IQE( ) spectra for each ℏ𝜔

hot carrier device. The result of this calculation for the Cu/n-GaN device accurately reproduces both the 

magnitude and the functional shape of the IQE( ) spectrum, including the photon energy at which the ℏ𝜔

abrupt decline in IQE( ) is observed (Figure 2f, blue dashed curve). This near-perfect quantitative ℏ𝜔

agreement between experiment and theory indicates that the parabolic-band approximation intrinsic in 

the Fowler model is appropriate for modeling hot-electron injection at a metal/semiconductor 

interface.3,19 Furthermore, this result demonstrates that it is unnecessary to account for the energy-

dependent lmfp of hot electrons to properly describe the behavior of the Cu/n-GaN device. In contrast, 

we observe that this same approach fails to accurately reproduce the salient features of the 

experimentally-observed IQE( ) spectrum for the Cu/p-GaN photodiode (Figure 2c, red dashed curve). ℏ𝜔
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Such drastic discrepancies between experiment and theory demonstrate that the Fowler model is 

incapable of explaining the slight decline in IQE( ) observed beyond the interband threshold of Cu. The ℏ𝜔

inability of the simple  function to replicate the IQE( ) spectrum of the Cu/p-GaN device (Figure 𝑃inj(𝜀) ℏ𝜔

2c) indicates that the parabolic-band approximation, along with the failure to account for transport, are 

both inappropriate simplifications for describing hot holes in the Cu d-bands.32

To accurately capture the physics of hot-hole injection, we retrieve the unknown  function 𝑃inj(𝜀)

for the Cu/p-GaN device by inverting equation (1) and using the experimental IQE( ) spectrum (Figure ℏ𝜔

2c) and the ab initio-calculated  function (Figure 3a) as inputs (see Methods). The result of 𝑃gen(𝜀,ℏω)

this mathematical procedure is shown in Figure 4a. In the intraband regime (  < 2 eV), a slow Fowler-ℏ𝜔

like rise in  is observed with increasing hot-hole energies up to the interband threshold of Cu (ε > 𝑃inj(𝜀)

–2 eV).  We also note that a non-zero injection probability is obtained for carriers with energy lower than 

the Schottky barrier, which is indicative of tunneling of hot holes across the Cu/p-GaN interface (Figure 

4a, grey portion of curve). Interestingly, we observe a sharp drop in  around the onset of interband 𝑃inj(𝜀)

transitions at 2.1 eV before the  function rises rapidly due to a monotonically growing momentum 𝑃inj(𝜀)

space for carrier injection (Fowler-like behavior) for very hot holes relative to the Cu Fermi level (ε < –

2.4 eV). This feature of the hot-hole injection probability is in stark contrast to the monotonic behavior 

of  for hot electrons (Figure 3b). The discrepancy between the  predicted from the Fowler 𝑃inj(𝜀) 𝑃inj(𝜀)

model and that extracted from our mathematical approach indicates that the onset of interband 

transitions in the metal must trigger an abrupt change of other hot-hole properties, beyond their energy 

distribution, that strongly impacts their transport to and across the metal/semiconductor interface. 

Collectively, these results demonstrate that there is a fundamental difference in the origin of the 

reduction in IQE( ) observed around the interband threshold of Cu between these two devices (Figure ℏ𝜔

2c,f). For hot-electron photodetectors (Figure 2f), this feature is associated with a decrease in the 𝑃gen

 distribution (Figure 3a, blue portion of curves). In contrast, for hot-hole devices (Figure 2c), the (𝜀,ℏω)

decline in IQE( ) is related to a drastic decrease of the  function (Figure 4a). ℏ𝜔 𝑃inj(𝜀)
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Figure 4: Determination of the Injection Probability (Pinj) for Hot Holes at the Cu/p-GaN Interface. a) Injection 

probability for hot holes mathematically extracted from the experimentally-determined IQE spectrum of Cu/p-

GaN photodetectors. The vertical grey line at 1.6 eV indicates the Schottky barrier height (ΦB ~ 1.6 eV) at the Cu/p-

GaN interface. b) Mean-free path (lmfp) of hot holes in Cu as a function of their energy relative to the Cu Fermi 

level at 0 eV. Red portion of the distribution corresponds to the fraction of hot holes that have sufficient energy 

to inject across the Schottky barrier. c) Ab initio calculation of the Pinj function with various levels of theory. The 

Fowler model with included transport probability accounting for the energy-dependent mean-free path of hot 

holes (grey curve), and the full quantum-mechanical model including both the transport and tunneling 

probabilities (red curve). 
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We note that the experimentally-derived  convolves effects of the transport probability 𝑃inj(𝜀) 𝑃𝑡𝑝

 within the metal and the transmission probability  across the metal/semiconductor interface (𝜀) 𝑃𝑡𝑚(𝜀)

(see Methods). Ab initio calculations shown in Figure 4b indicate that the mean free path (lmfp) of hot 

holes generated by interband transitions reduces to just a few nanometers, becoming significantly 

shorter than the characteristic dimensions (~20–30 nm) of our Cu nanoantennas. Thus, contrary to the 

case of hot electrons for which transport was neglected, implicitly assuming , transport 𝑃𝑡𝑝(𝜀) =  1

effects must be considered for hot-hole devices. We therefore multiply the previously calculated Fowler 

transmission probability (Figure 3b, red curve) by the transport probability  that a hot hole reaches 𝑃𝑡𝑝(𝜀)

the interface while accounting for its energy-dependent lmfp (see Methods). As shown in Figure 4c (grey 

curve), incorporating this detail introduces a dip in  at around 2 eV that is consistent with the 𝑃inj(𝜀)

experimentally-derived  function (Figure 4a). Hence, the non-monotonic behavior of   for 𝑃inj(𝜀) 𝑃inj(𝜀)

the hot hole device is attributed to the low carrier velocity and correspondingly short lmfp of d-band holes 

(Figure 4b, red portion of distribution). These results demonstrate that it is critical to account for the 

limited transport distance of hot holes from the metal d-bands when modeling the device physics of a 

plasmonic photodetector that operates via hot-hole collection at photon energies above the interband 

threshold of the metal nanoantenna. 

The incorporation of these transport effects into the device description does not yet explain the 

significantly non-zero  for hot-hole energies below the Schottky barrier (Figure 4a, grey portion of 𝑃inj(𝜀)

curve). This observation indicates that the Fowler model, which predicts that the responsivity of a hot-

carrier photodetector will be zero when the incident photon energy is equal to or below the Schottky 

barrier height, is incapable of describing this aspect of hot-hole injection at the Cu/p-GaN interface. We 

therefore replace the semiclassical Fowler transport model with a quantum-mechanical model including 

Fowler-Nordheim tunneling through the Schottky barrier (see Methods). Accounting for the tunneling 

probability while retaining the transport factor  discussed above, we find that the obtained  𝑃𝑡𝑝(𝜀) 𝑃inj(𝜀)

function captures both the sub-barrier injection and the reduced probability around the onset of d-band 

transitions (Figure 4c, solid red curve). Treating these various hot-hole effects at the highest level of 

theory shows excellent agreement with the actual injection probability function extracted from the 

experimental IQE( ) measurements (Figure 4a and Supporting Information Figure S4). Therefore, the ℏ𝜔

short lmfp of d-band holes at the band onset and the large interfacial fields at the Cu/p-GaN interface 
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necessitate treatment of both limited transport distances within the metal nanoantenna and tunneling 

through the Schottky barrier to explain the measured IQE( ). ℏ𝜔

These fundamental differences between the relative energies and velocities of hot electrons and 

hot holes suggest technological opportunities for employing hot-carrier devices in different frequency 

regimes. Hot-electron-based photodiodes are expected to exhibit better performance in the near-IR, 

where the longer lmfp of hot electrons, combined with their greater energy relative to the metal Fermi 

level, offers significant advantages for enabling efficient injection over an interfacial Schottky barrier. 

Alternatively, hot-hole-based Schottky junctions are anticipated to offer improved responsivities at 

higher photon energies (visible to ultraviolet), where the distribution of high-energy hot holes rapidly 

increases with increasing photon energy. Despite the short transport distances of hot holes at these 

energies, we note that the IQE from the Cu/p-GaN device actually exceeds that of the Cu/n-GaN device 

above 2.7 eV (Supporting Information Figure S5). The response time from both devices is below 10 ms 

and our observed device responsivities compare favorably to previously reported solid-state plasmonic 

photodetectors that operate in the visible regime. Indeed, the responsivity from our Cu/n-GaN device 

(~100 nA/mW at 1.8 eV) outperforms our previously reported Au/n-GaN device33 (~8 nA/mW at 1.8 eV) 

and exhibits slightly improved performance relative to that observed from Au/TiO2 (~80 nA/mW at 1.8 

eV) and Al/TiO2 (~40 nA/mW at 1.8 eV) plasmonic photodiodes.20 Although our studies were not 

motivated by a desire to create high-performance plasmonic photodiodes, the Cu/p-GaN device exhibits 

a reasonable IQE of 0.5 x 10-3 and a responsivity of around 70 nA/mW at 2.8 eV. Overall, our results 

suggest that hot-hole-based photodetectors show promise for enabling sensitive plasmonic photodiodes 

that operate across the visible to ultra-violet regimes. 

Conclusion

Through a detailed case-study of Cu-based plasmonic nanoantennas, we have established the 

critical role of metal band structure on the IQE( ) spectra of hot-carrier photodetectors that operate ℏ𝜔

via the collection of either hot holes (Cu/p-GaN) or hot electrons (Cu/n-GaN). The interband threshold 

of the metal nanoantenna determines the spectral profile of the IQE( ) for a hot-carrier device, but ℏ𝜔

exerts a different effect depending on the sign of the charge carrier that is collected by the underlying 
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semiconductor. For hot-electron collection, this transition from entirely intraband to primarily interband 

excitation results in a dramatic drop in device IQE( ) due to the unfavorable energy distribution of ℏ𝜔

interband hot electrons relative to the metal Fermi level. We note that this behavior is consistent with 

prior observations on Au-based nanoantennas.20,34 In contrast, devices that operate via hot-hole 

collection can exhibit favorable IQE( ) spectra when operating well-beyond the interband threshold of ℏ𝜔

the metal due to the large density of d-band states available below the Cu Fermi level. However, we 

observe that hot-hole transport significantly reduces device performance near the interband threshold 

of the metal. Overall, the significant difference in hot-carrier lmfp for electrons and holes (Figure 3c) 

requires careful consideration of the operational regime for these two distinct device polarities along 

with detailed engineering of interfacial properties (i.e. Schottky barrier height and electric near-fields). 

Our experimental observations strongly indicate that there are considerable advantages associated with 

building hot-hole photodetectors that function in the ultraviolet to visible regime of the electromagnetic 

spectrum. Taken together, our experimentally-observed trends supported by first-principles calculations 

offer general guidelines for the design of hot-carrier-driven devices that operate in the ballistic regime.  

Methods

Synthesis and Preparation of Devices

Plasmonic Cu/p-GaN photodiodes were constructed onto commercial p-type GaN/sapphire substrates 

(c-axis 0001 orientation) (4 ± 1 μm thick GaN) (Pam-Xiamen). First, a layer of S1813 was spin-coated onto 

the substrate (40 s, 3000 rpm) and post-baked for 2 min at 115 °C. The Ohmic pattern was exposed for 

40 s and then developed for 10 s in MF319®. The sample was then exposed to a mild oxygen plasma (30 

s, 200 W, 300 mT) to remove any photoresist residuals. The p-GaN substrates were then pre-treated 

with dilute NH4OH solution (0.02% v/v%) for 30 s to remove native oxide, followed by 30 s of copious 

washing in Nanopure water. Consistent with previous observations,22 it was empirically found that such 

surface treatments were critical for achieving good device performance. The p-GaN/sapphire substrate 

was then blown dry with N2 gas and rapidly loaded into the vacuum chamber of an electron-beam 

evaporator, minimizing exposure to ambient air. Ohmic contacts to the p-GaN substrate were fabricated 

via electron-beam physical vapor co-deposition of a 10 nm-thick Ni/Au (50/50 atomic %) alloy followed 
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by deposition of a 50 nm-thick Au capping layer. After removal of the photoresist in acetone, the sample 

was annealed in ambient air for 1 h at 500 °C. Subsequently, a layer of PMMA 495-A4 was spin-coated 

on the sample (1 min, 4000 rpm) and baked for 2 min at 180 °C. Next, a layer of PMMA 950-A2 was spin-

coated on top of it (1 min, 5000 rpm) and also baked for 2 min at 180 °C. Then, electron-beam lithography 

was used to write the nanoantenna pattern (Quanta FEI, NPGS system). Beam currents of approximately 

40 pA were used with exposures ranging from 350 μC/cm2 to 450 μC/cm2, thus achieving different 

nanoantenna widths with equal pitch. Following PMMA development (15 s in 1:3 MIBK:IPA solution), the 

same GaN surface preparation procedure was followed (O2 plasma, NH4OH etching, DI water rinsing, and 

N2 drying). Next, a 25 nm Cu layer was then deposited with electron-beam evaporation (Lesker) (0.8 Å/s, 

base pressure lower than 2 x 10-7 Torr). Using a very thin PMMA photoresist layer and excluding 

substrate rotation during the electron-beam deposition process, we were able to minimize the lift-off 

time to just a few minutes. PMMA was thus quickly removed with pure acetone, followed by rinsing in 

isopropanol and DI water before finally drying with N2. All measurements were performed within a few 

hours from the final sample preparation steps to minimize any effects related to surface oxidation in 

ambient air. 

Optical and Electrical Device Measurements

A monochromated laser beam from Fianium supercontinuum laser (2 W) was used as the light source 

for optical excitation. The beam was collimated and subsequently focused onto the sample with a long 

working distance, low-NA objective (Mitutoyo 5x, NA = 0.14). The transmitted or reflected power were 

measured with a Si photodetector. For normalizing the reflection measurements, a silver mirror (M, 

Thorlabs) was used. Background (BG) was subtracted from all the measurements. In order to 

continuously monitor the incident laser power, a tilted glass slide was used to deflect a small amount of 

power from the laser onto a reference photodiode. The incident power was modulated with a chopper, 

typically at a frequency of ~100 Hz, and the photocurrent signal was subsequently processed with a lock-

in amplifier. In order to electrically contact the sample and perform all the photocurrent measurements, 

piezoelectric micro-probes (Mibots®) are utilized.

Ab Initio Calculations and Theoretical Modelling
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Throughout, we use ab initio predictions of hot carrier energy distributions  accounting for 𝑃gen(𝜀,ℏω)

direct and phonon-assisted transitions12 based on density-functional theory and Wannier interpolation 

for electron-phonon matrix elements as implemented in the JDFTx software.35 We also compute the 

lifetimes  and mean-free paths  for each electronic state (specified by wave vector k and band n) 𝜏𝑘𝑛 𝜆𝑘𝑛

accounting for electron-electron and electron-phonon scattering. See ref. 12 for computational details 

of the DFT calculations for these quantities. 

Determination of the  function for the hot-hole device is achieved through the following 𝑃𝑖𝑛𝑗(𝜀)

mathematical procedure. Based on the assumption of ballistic collection of hot carriers, we re-write 

equation (1) from the manuscript as:

𝐼𝑄𝐸(ℏ𝜔) = 𝐼𝑄𝐸𝑒𝑥𝑝 ~ ∫
ℎ𝑣

𝛷𝐵

𝑃𝑖𝑛𝑗(𝜀)𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝜀,𝜔)𝑑𝜀

We can now use the ab initio calculations of  and the experimental results for  to 𝑃gen(𝜀,ℏω) 𝐼𝑄𝐸(ℏ𝜔)

retrieve the value of  for the hot-hole device. Specifically, we define the following minimization 𝑃𝑖𝑛𝑗(𝜀)

problem: 

𝑚𝑖𝑛‖𝐼𝑄𝐸𝑒𝑥𝑝 ― ∫𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑃𝑖𝑛𝑗𝑑𝜀‖2

Under the constraints:            𝑃𝑖𝑛𝑗(𝜀) = { > 0  𝜀 > ΦB
= 0  𝜀 ≤ ΦB

Where :    with   being the considered photon energy. 𝜀,𝜔: ΦB→𝜔𝑚𝑎𝑥 𝜔𝑚𝑎𝑥

The obtained function  is shown in Figure 3b of the manuscript and reproduced in 𝑃𝑖𝑛𝑗(𝜀)

Supplementary Information Figure S5. 

For analyzing hot carrier transport and injection, we combine key ab initio inputs such as the mean-free 

path  of each electronic state of energy , with conventional semiconductor modeling techniques 𝜆𝑘𝑛 𝜀𝑘𝑛

relying on a parabolic-band approximation. In particular, our final model for the injection probability, 𝑃𝑖𝑛𝑗

 combines a transport probability  within the metal and a transmission (𝜀) = 𝑃𝑡𝑝(𝜀)𝑃𝑡𝑚(𝜀) 𝑃𝑡𝑝(𝜀)

probability  across the metal/semiconductor interface. We predict the energy-dependent 𝑃𝑡𝑚(𝜀)

transport probability according to the following expression:
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𝑃𝑡𝑝(𝜀) = 〈 
1 ― 𝑒

― (𝑑
𝐿 +

𝑑
𝜆𝑘𝑛)

(1 +
𝐿

𝜆𝑘𝑛)(1 ― 𝑒
―𝑑
𝐿  )〉

𝜀𝑘𝑛 = 𝜀

by averaging over all carriers with energy  the probability that hot carriers generated with a spatial 𝜀𝑘𝑛 = 𝜀

profile  reach the interface without scattering based on their individual mean-free paths . 𝑒 ―𝑧/𝐿 𝜆𝑘𝑛

Above,  is the plasmon skin depth, which is approximately 25 nm in the frequency range of interest, 𝐿

and = 25 nm is the metal film thickness. 𝑑 

We calculate the transmission probability, , at two levels of theory for comparison. First, we use 𝑃𝑡𝑚(𝜀)

the Fowler model accounting for both transverse momentum matching and angle-dependent reflection 

probability.19 Additionally, we compute the same quantities by explicitly solving Schrödinger’s equation 

within the semiconductor numerically in the presence of an electric field,  
― ∇2𝜓

2𝑚 ⋆ + (𝜀𝐹 + Φ𝐵 ― 𝐸𝑧)

 and matching the value and derivative of  to a plane-wave in the metal. In the absence of a 𝜓 = 𝜓𝐸 𝜓

field,  is a plane-wave in the semiconductor as well, and this reduces exactly to the Fowler model with 𝜓

reflection probability. However, once we solve the Schrödinger equation explicitly with a finite field, we 

naturally capture tunneling below the barrier (predominantly in the Fowler-Nordheim regime, but we 

do not make any specific approximations like WKB) and the classical transport above it on the same 

footing. Specifically, for the calculations shown in Figure 4, we used an electric field of E = 0.7 eV/nm, 

= 7.05 eV, and m* = 0.3 me in Cu, and an effective hole mass of m* = 0.3 me in GaN. 𝜀𝐹 
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Schematic of plasmonic photodiodes, AFM image and absorption spectrum of the Cu/p-GaN 

photodetector, responsivity of bare p-GaN, Cu/p-GaN, bare n-GaN, and Cu/n-GaN devices with 

determination of their respective Schottky barrier heights, direct comparison of IQE spectra for Cu/p-

GaN and Cu/n-GaN devices, and a direct comparison of the experimentally-derived and theoretically-

calculated Pinj functions for hot-hole injection in Cu/p-GaN (PDF). This material is available free of charge 

via the Internet at http://pubs.acs.org.
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