733 research outputs found

    Competitive 0 and {\pi} states in S/F multilayers: multimode approach

    Get PDF
    We have investigated the critical temperature behavior in periodic superconductor/ ferromagnet (S/F) multilayers as a function of the ferromagnetic layer thickness dfd_f and the interface transparency. The critical temperature Tc(df)T_c(d_f) exhibits a damped oscillatory behavior in these systems due to an exchange field in the ferromagnetic material. In this work we have performed TcT_c calculations using the self-consistent multimode approach, which is considered to be exact solving method. Using this approach we have derived the conditions of 0 or π\pi state realization in periodic S/F multilayers. Moreover, we have presented the comparison between the single-mode and multimode approaches and established the limits of applicability of the single-mode approximation, frequently used by experimentalists

    Analysis of airplane boarding via space-time geometry and random matrix theory

    Full text link
    We show that airplane boarding can be asymptotically modeled by 2-dimensional Lorentzian geometry. Boarding time is given by the maximal proper time among curves in the model. Discrepancies between the model and simulation results are closely related to random matrix theory. We then show how such models can be used to explain why some commonly practiced airline boarding policies are ineffective and even detrimental.Comment: 4 page

    Antiferromagnetic resonances in superconductor-ferromagnet multilayers

    Full text link
    In this work, we study magnetization dynamics in superconductor-ferromagnet (S-F) thin-film multilayer. Theoretical considerations supported by the broad-band ferromagnetic resonance spectroscopy reveal development of acoustic and optic resonance modes in S-F multilayers at significantly higher frequencies in comparison to the Kittel mode of individual F-layers. These modes are formed due to antiferromagnetic-like interaction between F-layers via shared circulating superconducting currents in S-layers. The gap between resonance modes is determined by the thickness and superconducting penetration depth in S-layers. Overall, rich spectrum of S-F multilayers and its tunability opens wide prospects for application of these multialyers in magnonics as well as in various superconducting hybrid systems.Comment: 5 pages, 4 figures, 34 reference

    Double Fe-impurity charge state in the topological insulator Bi2_2Se3_3

    Get PDF
    The influence of individual impurities of Fe on the electronic properties of topological insulator Bi2_2Se3_3 is studied by Scanning Tunneling Microscopy. The microscope tip is used in order to remotely charge/discharge Fe impurities. The charging process is shown to depend on the impurity location in the crystallographic unit cell, on the presence of other Fe impurities in the close vicinity, as well as on the overall doping level of the crystal. We present a qualitative explanation of the observed phenomena in terms of tip-induced local band bending. Our observations evidence that the specific impurity neighborhood and the position of the Fermi energy with respect to the Dirac point and bulk bands have both to be taken into account when considering the electron scattering on the disorder in topological insulators.Comment: 10 pages, accepted for publication in Applied Physics Letters, minor bugs were correcte

    Tunable Resonant Raman Scattering from Singly Resonant Single Wall Carbon Nanotubes

    Full text link
    We perform tunable resonant Raman scattering on 17 semiconducting and 7 metallic singly resonant single wall carbon nanotubes. The measured scattering cross-section as a function laser energy provides information about a tube's electronic structure, the lifetime of intermediate states involved in the scattering process and also energies of zone center optical phonons. Recording the scattered Raman signal as a function of tube location in the microscope focal plane allows us to construct two-dimensional spatial maps of singly resonant tubes. We also describe a spectral nanoscale artifact we have coined the "nano-slit effect"

    Tight inequalities for nonclassicality of measurement statistics

    Full text link
    In quantum optics, measurement statistics -- for example, photocounting statistics -- are considered nonclassical if they cannot be reproduced with statistical mixtures of classical radiation fields. We have formulated a necessary and sufficient condition for such nonclassicality. This condition is given by a set of inequalities that tightly bound the convex set of probabilities associated with classical electromagnetic radiation. Analytical forms for full sets and subsets of these inequalities are obtained for important cases of realistic photocounting measurements and unbalanced homodyne detection. As an example, we consider photocounting statistics of phase-squeezed coherent states. Contrary to a common intuition, the analysis developed here reveals distinct nonclassical properties of these statistics that can be experimentally corroborated with minimal resources.Comment: 12 pages, 4 figure
    corecore