3,371 research outputs found

    Design and control of reconfigurable bed/chair system with body pressuring sensing

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1997.Includes bibliographical references (leaf 68).by Joseph S. Spano.M.S

    Chronobiology of Epilepsy

    Get PDF
    A fine balance between neuronal excitation and inhibition governs the physiological state of the brain. It has been hypothesized that when this balance is lost as a result of excessive excitation or reduced inhibition, pathological states such as epilepsy emerge. Decades of investigation have shown this to be true in vitro. However, in vivo evidence of the emerging imbalance during the "latent period" between the initiation of injury and the expression of the first spontaneous behavioral seizure has not been demonstrated. Here, we provide the first demonstration of this emerging imbalance between excitation and inhibition in vivo by employing long term, high temporal resolution, and continuous local field recordings from microelectrode arrays implanted in an animal model of limbic epilepsy. We were able to track both the inhibitory and excitatory postsynaptic field activity during the entire latent period, from the time of injury to the occurrence of the first spontaneous epileptic seizure. During this latent period we observe a sustained increase in the firing rate of the excitatory postsynaptic field activity, paired with a subsequent decrease in the firing rate of the inhibitory postsynaptic field activity within the CA1 region of the hippocampus. Firing rates of both excitatory and inhibitory CA1 field activities followed a circadian- like rhythm, which is locked near in-phase in controls and near anti-phase during the latent period. We think that these observed changes are implicated in the occurrence of spontaneous seizure onset following injury

    Ultrafast spectroscopy of single molecules

    Get PDF
    We present a single-molecule study on femtosecond dynamics in multichromophoric systems, combining fs pump-probe, emission-spectra and fluorescence-lifetime analysis. At the single molecule level a wide range of exciton delocalisation lengths and energy redistribution times is revealed. Next, two color pump-probe experiments are presented as a step to addressing ultrafast energy transfer in individual complexes

    Wind-tunnel investigation of an NACA 23012 airfoil with 30 percent-chord venetian-blind flaps

    Get PDF
    Report presents the results of an investigation made in the NACA 7 by 10-foot wind tunnel of a NACA 23012 airfoil with 30-percent-chord venetian-blind flaps having one, two, three, and four slats of Clark y section. The three-slat arrangements was aerodynamically the best of those tested but showed practically no improvement over the comparable arrangement used in the preliminary tests published in NACA Technical Report No. 689. The multiple-slat flaps gave slightly higher lift coefficients than the one-slat (Fowler) flap but gave considerably greater pitching-moment coefficients. An analysis of test data indicates that substitution of a thicker and more cambered section for the Clark y slats should improve the aerodynamic and the structural characteristics of the venetian-blind flap

    Variabilità spazio-temporale della microalga <i>Chrysophaeum taylorii</i> Lewis &amp; Bryan lungo le coste nord-orientali della Sardegna = Spatio-temporal variabilty of the microalga <i>Chrysophaeum taylorii</i> Lewis &amp; Bryan along North-Eastern Sardinian coasts

    Get PDF
    In the summer months of 2010 the cell density of the alien benthic microalga Chrysophaeum taylorii Lewis &amp; Bryan (Pelagophyceae) was assessed on hard benthic substrates in sixteen study sites along the north-eastern coast of Sardinia in order to obtain useful information on spatial and temporal variations of the species in the area during summer

    TiO2 nanoparticles may alleviate cadmium toxicity in co-treatment experiments on the model hydrophyte Azolla filiculoides

    Get PDF
    The hydrophyte Azolla filiculoides can be a useful model to assess if TiO2 NPs may in some way alleviate the Cd injuries and improve the ability of the plant to cope with this metal. With this mechanistic hypothesis, after a pre-treatment with TiO2 NPs, A. filiculoides plants were transferred to cadmium-contaminated water with or without TiO2 nanoparticles. After 5 days of treatment, cadmium uptake, morpho-anatomical, and physiological aspects were studied in plants. The continuous presence of TiO2 nanoparticles, though not increasing the uptake of cadmium in comparison with a priming treatment, induced a higher translocation of this heavy metal to the aerial portion. Despite the translocation factor was always well below 1, cadmium contents in the fronds, generally greater than 100 ppm, ranked A. filiculoides as a good cadmium accumulator. Higher cadmium contents in leaves did not induce damages to the photosynthetic machinery, probably thanks to a compartmentalization strategy aimed at confining most of this pollutant to less metabolically active peripheral cells. The permanence of NPs in growth medium ensured a better efficiency of the antioxidant apparatus (proline and glutathione peroxidase and catalase activities) and induced a decrease in H2O2 content, but did not suppress TBARS level

    Third-order nonlinear optical properties of stacked bacteriochlorophylls in bacterial photosynthetic light-harvesting proteins

    Full text link
    Enhancement of the nonresonant second order molecular hyperpolarizabilities {gamma} were observed in stacked macrocyclic molecular systems, previously in a {micro}-oxo silicon phthalocyanine (SiPcO) monomer, dimer and trimer series, and now in bacteriochlorophyll a (BChla) arrays of light harvesting (LH) proteins. Compared to monomeric BChla in a tetrahydrofuran (THF) solution, the <{gamma}> for each macrocycle was enhanced in naturally occurring stacked macrocyclic molecular systems in the bacterial photosynthetic LH proteins where BChla`s are arranged in tilted face-to-face arrays. In addition, the {gamma} enhancement is more significant in B875 of LH1 than in B850 in LH2. Theoretical modeling of the nonresonant {gamma} enhancement using simplified molecular orbitals for model SiPcO indicated that the energy level of the two photon state is crucial to the {gamma} enhancement when a two photon process is involved, whereas the charge transfer between the monomers is largely responsible when one photon near resonant process is involved. The calculated results can be extended to {gamma} enhancement in B875 and B850 arrays, suggesting that BChla in B875 are more strongly coupled than in B850. In addition, a 50--160 fold increase in <{gamma}> for the S{sub 1} excited state of relative to S{sub 0} of bacteriochlorophyll in vivo was observed which provides an alternative method for probing excited state dynamics and a potential application for molecular switching

    Statistics of low-energy levels of a one-dimensional weakly localized Frenkel exciton: A numerical study

    Get PDF
    Numerical study of the one-dimensional Frenkel Hamiltonian with on-site randomness is carried out. We focus on the statistics of the energy levels near the lower exciton band edge, i. e. those determining optical response. We found that the distribution of the energy spacing between the states that are well localized at the same segment is characterized by non-zero mean, i.e. these states undergo repulsion. This repulsion results in a local discrete energy structure of a localized Frenkel exciton. On the contrary, the energy spacing distribution for weakly overlapping local ground states (the states with no nodes within their localization segments) that are localized at different segments has zero mean and shows almost no repulsion. The typical width of the latter distribution is of the same order as the typical spacing in the local discrete energy structure, so that this local structure is hidden; it does not reveal itself neither in the density of states nor in the linear absorption spectra. However, this structure affects the two-exciton transitions involving the states of the same segment and can be observed by the pump-probe spectroscopy. We analyze also the disorder degree scaling of the first and second momenta of the distributions.Comment: 10 pages, 6 figure

    A remote sensing and modeling integrated approach for constructing continuous time series of daily actual evapotranspiration

    Get PDF
    Satellite remote sensing-based surface energy balance (SEB) techniques have emerged as useful tools for quantifying spatialized actual evapotranspiration at various temporal and spatial scales. However, discontinuous data acquisitions and/or gaps in image acquisition due to cloud cover can limit the applicability of satellite remote sensing (RS) in agriculture water management where continuous time series of daily crop actual evapotranspiration (ETc act) are more valued. The aim of the research is to construct continuous time series of daily ETc act starting from temporal estimates of actual evapotranspiration obtained by SEB modelling (ETa eb) on Landsat-TM images. SEBAL model was integrated with the FAO 56 evaporation model, RS-retrieved vegetative biomass dynamics (by NDVI) and on-field measurements of soil moisture and potential evapotranspiration. The procedure was validated by an eddy covariance tower on a vineyard with partial soil coverage in the south of Sardinia Island, Italy. The integrated modeling approach showed a good reproduction of the time series dynamics of observed ETc act (R2 =0.71, MAE=0.54 mm d-1, RMSE=0.73 mm d-1). A daily and a cumulative monthly temporal analysis showed the importance of integrating parameters that capture changes in the soil-plant-atmosphere (SPA) continuum between Landsat acquisitions. The comparison with daily ETc act obtained by the referenced ET fraction (ETrF) method that considers only weather variability (by ETo) confirmed the lead of the proposed procedure in the spring/early summer periods when vegetation biomass changes and soil water evaporation have a significant weight in the ET process. The applied modelling approach was also robust in constructing the missing ETc act data under scenarios of limited cloud-free Landsat acquisitions. The presented integrated approach has a great potential for the near real time monitoring and scheduling of irrigation practices. Further testing of this approach with diverse dataset and the integration with the soil water modeling is to be analyzed in future work
    • …
    corecore